Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445248

RESUMO

The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.


Assuntos
Células Endoteliais/metabolismo , AVC Isquêmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais/patologia , Humanos , AVC Isquêmico/patologia , Neuroglia/patologia , Neurônios/patologia , Células-Tronco/patologia
2.
Proc Natl Acad Sci U S A ; 111(21): E2219-28, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821775

RESUMO

The unfolded protein response (UPR) pathway, a stress-induced signaling cascade emanating from the endoplasmic reticulum (ER), regulates the expression and activity of molecules including BiP (HSPA5), IRE1 (ERN1), Blimp-1 (PRDM1), and X-box binding protein 1 (XBP1). These molecules are required for terminal differentiation of B cells into plasma cells and expressed at high levels in plasma cell-derived multiple myeloma. Although these molecules have no known role at early stages of B-cell development, here we show that their expression transiently peaks at the pre-B-cell receptor checkpoint. Inducible, Cre-mediated deletion of Hspa5, Prdm1, and Xbp1 consistently induces cellular stress and cell death in normal pre-B cells and in pre-B-cell acute lymphoblastic leukemia (ALL) driven by BCR-ABL1- and NRAS(G12D) oncogenes. Mechanistically, expression and activity of the UPR downstream effector XBP1 is regulated positively by STAT5 and negatively by the B-cell-specific transcriptional repressors BACH2 and BCL6. In two clinical trials for children and adults with ALL, high XBP1 mRNA levels at the time of diagnosis predicted poor outcome. A small molecule inhibitor of ERN1-mediated XBP1 activation induced selective cell death of patient-derived pre-B ALL cells in vitro and significantly prolonged survival of transplant recipient mice in vivo. Collectively, these studies reveal that pre-B ALL cells are uniquely vulnerable to ER stress and identify the UPR pathway and its downstream effector XBP1 as novel therapeutic targets to overcome drug resistance in pre-B ALL.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adulto , Animais , Linfócitos B/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/farmacologia , Western Blotting , Diferenciação Celular/fisiologia , Criança , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Citometria de Fluxo , Deleção de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Análise em Microsséries , Dados de Sequência Molecular , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição de Fator Regulador X , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box , beta-Galactosidase
3.
Analyst ; 140(4): 1265-74, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25555081

RESUMO

Human bone marrow-derived mesenchymal stem cells (hMSCs) consist of heterogeneous subpopulations with different multipotent properties: small and large cells with high and low multipotency, respectively. Accordingly, sorting out a target subpopulation from the others is very important to increase the effectiveness of cell-based therapy. We performed flow-based sorting of hMSCs by using optimally designed microfluidic chips based on the hydrodynamic filtration (HDF) principle. The chip was designed with the parameters rigorously determined by the complete analysis of laminar flow for flow fraction and complicated networks of main and multi-branched channels for hMSCs sorting into three subpopulations: small (<25 µm), medium (25-40 µm), and large (>40 µm) cells. By focusing with a proper ratio between main and side flows, cells migrate toward the sidewall due to a virtual boundary of fluid layers and enter the branch channels. This opens the possibility of sorting stem cells rapidly without damage. Over 86% recovery was achieved for each population of cells with complete purity in small cells, but the sorting efficiency of cells is slightly lower than that of rigid model particles, due to the effect of cell deformation. Finally, we confirmed that our method could successfully fractionate the three subpopulations of hMSCs by analyzing the surface marker expressions of cells from each outlet.


Assuntos
Separação Celular/instrumentação , Células-Tronco Mesenquimais/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Adulto , Linhagem Celular , Desenho de Equipamento , Filtração/instrumentação , Humanos , Hidrodinâmica
4.
Analyst ; 140(23): 7997-8006, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26524182

RESUMO

The ability of antimicrobial peptides (AMPs) for effective binding to multiple target microbes has drawn lots of attention as an alternative to antibodies for detecting whole bacteria. We investigated pathogenic Escherichia coli (E. coli) detection by applying a microfluidic based biosensing device embedded with AMP-labeled beads. According to a new channel design, our device is reusable by the repeated operation of detection and regeneration modes, and the binding rate is more enhanced due to even distribution of the bacterial suspension inside the chamber by implementing influx side channels. We observed higher binding affinity of pathogenic E. coli O157:H7 for AMP-labeled beads than nonpathogenic E. coli DH5α, and the fluorescence intensity of pathogenic E. coli was about 3.4 times higher than the nonpathogenic one. The flow rate of bacterial suspension should be applied above a certain level for stronger binding and rapid detection by attaining a saturation level of detection within a short time of less than 20 min. A possible improvement in the limit of detection in the level of 10 cells per mL for E. coli O157:H7 implies that the AMP-labeled beads have high potential for the sensitive detection of pathogenic E. coli at an appropriate flow rate.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Técnicas Bacteriológicas/métodos , Escherichia coli O157/isolamento & purificação , Dispositivos Lab-On-A-Chip , Peptídeos Catiônicos Antimicrobianos/química , Limite de Detecção , Microesferas
5.
Eur J Orthod ; 35(6): 832-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23314328

RESUMO

The understanding of palatine vault growth in normal subjects is important to orthodontists. The aim of this study was to evaluate three dimensional (3D) longitudinal changes in the palatal vault from 6 to 14 years of age. Complete dental stone casts were biennially prepared for 50 subjects (25 girls and 25 boys) followed up from 6 to 14 years of age. Virtual casts were constructed using 3D laser scanning and reconstruction software. The reference gingival plane was constructed. The palatal heights were measured from a total of 12 quadrisectional points between the most gingival points of the palatal dentogingival junctions from the canine to the first molar. In addition, the palatal heights were measured from a total of 12 lateral and medial endpoints of the palatine rugae. The measurement changes over time were analyzed using a mixed-effect analysis. There were significant annual increases in all of the variables related to palatal height. However, the individual random variability at baseline was quite large. There was no significant sexual dimorphism in the linear measurements or in the annual increases as fixed effects in the model. During the observation period, increases in palatal vault height were significant in all regions. The growth pattern seemed to differ between genders even though it was not significant. More elaborate methodology is necessary to gain a better understanding of 3D palatal growth.


Assuntos
Palato Duro/anatomia & histologia , Palato Duro/crescimento & desenvolvimento , Adolescente , Desenvolvimento do Adolescente , Criança , Desenvolvimento Infantil , Técnica de Fundição Odontológica , Dentição , Feminino , Humanos , Imageamento Tridimensional , Estudos Longitudinais , Masculino , República da Coreia , Software
6.
Biosensors (Basel) ; 13(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37504139

RESUMO

Bacterial infections represent a serious and global threat in modern medicine; thus, it is very important to rapidly detect pathogenic bacteria, such as Escherichia coli (E. coli) O157:H7. Once treatments are delayed after the commencement of symptoms, the patient's health quickly deteriorates. Hence, real-time detection and monitoring of infectious agents are highly critical in early diagnosis for correct treatment and safeguarding public health. To detect these pathogenic bacteria, many approaches have been applied by the biosensors community, for example, widely-used polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), culture-based method, and adenosine triphosphate (ATP) bioluminescence. However, these approaches have drawbacks, such as time-consumption, expensive equipment, and being labor-intensive, making it critical to develop ultra-sensitive and highly selective detection. The microfluidic platform based on surface plasmon resonance (SPR), electrochemical sensing, and rolling circle amplification (RCA) offers proper alternatives capable of supplementing the technological gap for pathogen detection. Note that the microfluidic biochip allows to develop rapid, sensitive, portable, and point-of-care (POC) diagnostic tools. This review focuses on recent studies regarding accurate and rapid detection of E. coli O157:H7, with an emphasis on POC methods and devices that complement microfluidic systems. We also examine the efficient whole-body detection by employing antimicrobial peptides (AMPs), which has attracted growing attention in many applications.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Humanos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais/métodos , Testes Imediatos
7.
Blood ; 115(5): 1049-53, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965645

RESUMO

To elucidate whether tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia is associated with characteristic genomic alterations, we analyzed DNA samples from 45 TKI-resistant chronic myeloid leukemia patients with 250K single nucleotide polymorphism arrays. From 20 patients, matched serial samples of pretreatment and TKI resistance time points were available. Eleven of the 45 TKI-resistant patients had mutations of BCR-ABL1, including 2 T315I mutations. Besides known TKI resistance-associated genomic lesions, such as duplication of the BCR-ABL1 gene (n = 8) and trisomy 8 (n = 3), recurrent submicroscopic alterations, including acquired uniparental disomy, were detectable on chromosomes 1, 8, 9, 17, 19, and 22. On chromosome 22, newly acquired and recurrent deletions of the IGLC1 locus were detected in 3 patients, who had previously presented with lymphoid or myeloid blast crisis. This may support a hypothesis of TKI-induced selection of subclones differentiating into immature B-cell progenitors as a mechanism of disease progression and evasion of TKI sensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Polimorfismo de Nucleotídeo Único , Inibidores de Proteínas Quinases/uso terapêutico , Benzamidas , Aberrações Cromossômicas , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 22/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 9/genética , Dasatinibe , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Mesilato de Imatinib , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico
8.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269514

RESUMO

Astrocytes display regenerative potential in pathophysiologic conditions. In our previous study, heme oxygenase-1 (HO-1) promoted astrocytic mitochondrial functions in mice via the peroxisome-proliferator-activating receptor-γ coactivator-1α (PGC-1α) pathway on administering Korean red ginseng extract (KRGE) after traumatic brain injury (TBI). In this study, KRGE promoted astrocytic mitochondrial functions, assessed with oxygen consumption and adenosine triphosphate (ATP) production, which could be regulated by the translocase of the outer membrane of mitochondria 20 (Tom20) pathway with a PGC-1α-independent pathway. The HO-1-Tom20 axis induced an increase in mitochondrial functions, detected with cytochrome c oxidase subunit 2 and cytochrome c. HO-1 crosstalk with nicotinamide phosphoribosyltransferase was concomitant with the upregulated nicotinamide adenine dinucleotide (NAD)/NADH ratio, thereby upregulating NAD-dependent class I sirtuins. In adult neural stem cells (NSCs), KRGE-treated, astrocyte-conditioned media increased oxygen consumption and Tom20 levels through astrocyte-derived HO-1. HO inactivation by Sn(IV) protoporphyrin IX dichloride in TBI mice administered KRGE decreased neuronal markers, together with Tom20. Thus, astrocytic HO-1 induced astrocytic mitochondrial functions. HO-1-related, astrocyte-derived factors may also induce neuronal differentiation and mitochondrial functions of adult NSCs after TBI. KRGE-mediated astrocytic HO-1 induction may have a key role in repairing neurovascular function post-TBI in peri-injured regions by boosting astrocytic and NSC mitochondrial functions.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Panax , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Heme Oxigenase-1/metabolismo , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , Células-Tronco Neurais/metabolismo , Panax/metabolismo
9.
Exp Mol Med ; 54(11): 1955-1966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36376495

RESUMO

NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.


Assuntos
Proteína Homeobox Nanog , Células-Tronco Neurais , Encéfalo/metabolismo , Hipóxia/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Animais
10.
Schizophr Res ; 246: 225-234, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810486

RESUMO

Stem cell technologies have presented explicit evidence of the neurodevelopmental hypothesis of schizophrenia. However, few studies investigated relevance of the schizophrenia genetic liability and the use of genetic reprogramming on pluripotent stem cells to the impaired neurodevelopment shown by stem cells. Therefore, this study sought to investigate the cellular phenotypes of induced neural stem cells (iNSCs) derived without genetic modification from patients with schizophrenia and from genetic high risk (GHR) individuals. Three patients with a diagnosis of schizophrenia, 3 GHR individuals who had two or more relatives with schizophrenia, and 3 healthy volunteers participated. iNSCs were derived using a small molecule-based lineage switch method, and their gene expression levels and migration capabilities were examined. Demographic characteristics were not different among the groups (age, χ2 = 5.637, P = .060; education, χ2 = 2.111, P = .348). All participants stayed well during the follow-up except one GHR individual who developed psychosis 1.5 years later. Migration capacity was impaired in iNSCs from patients with schizophrenia (SZ-iNSCs) compared to iNSCs from GHR individuals or controls (P < .001). iNSCs from a GHR individual who later developed schizophrenia showed migratory impairment that was similar to SZ-iNSCs. Gene expression levels of Sox2 in SZ-iNSCs were significantly lower than those in controls (P = .028). Defective migration in genetically unmodified SZ-iNSCs is the first direct demonstration of neurodevelopmental abnormalities in schizophrenia. Additionally, alterations in gene expression in SZ-iNSCs suggest mechanisms by which genetic liability leads to aberrant neurodevelopment.


Assuntos
Células-Tronco Neurais , Transtornos Psicóticos , Esquizofrenia , Humanos , Células-Tronco Neurais/metabolismo , Transtornos Psicóticos/genética , Transtornos Psicóticos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
11.
Dement Neurocogn Disord ; 20(1): 1-8, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33552214

RESUMO

BACKGROUND AND PURPOSE: Neural stem cells (NSCs) have the ability to regenerate, proliferate, and differentiate, enabling them to play important roles in the recovery of the damaged nervous system. However, in neurodegenerative diseases such as Alzheimer's disease (AD), the NSCs are damaged as well. Glia-like cells from human mesenchymal stem cells (ghMSCs) are functionally enhanced adult stem cells. In the present study, we investigated whether ghMSCs could protect NSCs from amyloid beta (Aß)-mediated toxicity. METHODS: Rat NSCs were obtained from E13-14 fetal rat cortices. NSCs were seeded in pre-coated plates, and the next day, cells were simultaneously treated with 20 µM Aß and 0.4 µm pore insert well-seeded ghMSCs. After 48 hours of co-treatment, cell viability and proliferation were evaluated. After 2 hours of co-treatment, western blotting was performed to measure inflammasome-related factors, such as NOD-like receptor family pyrin domain containing 3, caspase-1, and interleukin-1ß. RESULTS: The results showed that ghMSCs increased viability and proliferation and reduced the toxicity of NSCs injured by Aß by reducing the NRLP3 inflammasome activation of NSCs induced by Aß. CONCLUSIONS: In this study, we confirmed that ghMSCs could protect NSCs in an in vitro model of AD through the regulation of inflammatory response.

12.
Biomaterials ; 275: 120980, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34198163

RESUMO

We expanded the application of endothelin-1 (EDN1) by treating human mesenchymal stem cell (hMSC) organotypic spinal cord slice cultures with EDN1. EDN1-treated hMSCs significantly enhanced neuronal outgrowth. The underlying mechanism of this effect was evaluated via whole-genome methylation. EDN1 increased whole-genome demethylation and euchromatin. To observe demethylation downstream of EDN1, deaminases and glycosylases were screened, and APOBEC1 was found to cause global demethylation and OCT4 gene activation. The sequence of methyl-CpG-binding domain showed similar patterns between EDN1- and APOBEC1-induced demethylation. SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 4 (SMARC A4) and SMARC subfamily D, member 2 (SMARC D2) were screened via methyl-CpG-binding domain sequencing as a modulator in response to EDN1. Chromatin immunoprecipitation of the H3K9me3, H3K27me3, and H3K4me4 binding sequences on the APOBEC1 promoter was analyzed following treatment with or without siSMARC A4 or siSMARC D2. The results suggested that SMARC A4 and SMARC D2 induced a transition from H3K9me3 to H3K4me3 in the APOBEC1 promoter region following EDN1 treatment. Correlations between EDN1 pathways and therapeutic efficacy in hBM-MSCs were determined in a sciatic nerve injury mouse model. Thus, EDN1 may be a useful novel-concept bioactive peptide and biomaterial component for improving hMSC regenerative capability.


Assuntos
Células-Tronco Mesenquimais , Neuropatia Ciática , Animais , Medula Óssea , Endotelina-1 , Humanos , Camundongos , Nervo Isquiático
13.
Glia ; 58(9): 1118-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20468053

RESUMO

Human bone marrow-derived mesenchymal stem cells (hMSCs) are considered a desirable cell source for autologous cell transplantation therapy to treat nervous system injury due to their ability to differentiate into specific cell types and render the tissue microenvironment more favorable for tissue repair by secreting various growth factors. To potentiate their possible trophic effect, hMSCs were induced without genetic modification to adopt characteristics of Schwann cells (SCs), which provide trophic support for regenerating axons. The induced hMSCs (shMSCs) adopted a SC-like morphology and expressed SC-specific proteins including the p75 neurotrophin receptor, which correlated with cell-cycle exit. In addition, shMSCs secreted higher amounts of several growth factors, such as hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) when compared with uninduced hMSCs. Coculture of shMSCs with Neuro2A cells significantly increased neurite outgrowth and cell proliferation but decreased cell death. Transplantation of shMSCs in an ex vivo model of spinal cord injury dramatically enhanced axonal outgrowth, which was mediated by HGF and VEGF secretion and also decreased cell death. These results demonstrate that shMSCs could serve as an endogenous source of neurotrophic growth factors to facilitate axonal regeneration while at the same time protecting the resident cells at the site of tissue injury. We propose that these induced hMSCs without genetic modification are useful for autologous cell therapy to treat nervous system injury.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia
14.
Mol Neurobiol ; 56(11): 7617-7630, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31081524

RESUMO

Stem cell therapy is considered to be a promising future treatment for intractable neurological diseases, although all the clinical trials using stem cells have not yet shown any good results. Early passage mesenchymal stem cells (MSCs) have been used in most clinical trials because of the issues on safety and efficacy. However, it is not easy to get plenty of cells enough for the treatment and it costs too much. Lots of late passage MSCs can be obtained at lower cost but their efficacy would be a big hurdle for clinical trials. If late passage MSCs with better efficacy could be used in clinical trials, it could be a new and revolutionary solution to reduce cost and enhance easier clinical trials. In the present study, it was investigated whether late passage MSCs could be induced into glia-like cells (ghMSCs); ghMSCs had better efficacy and they protected neurons and the brain from ischemia, and insulin-like growth factor binding protein-4 (IGFBP-4) played a critical role in beneficial effect of ghMSCs. ghMSCs were induced from MSCs and treated in in vitro and in vivo models of ischemia. They effectively protected neurons from ischemia and restored the brain damaged by cerebral infarction. These beneficial effects were significantly blocked by IGFBP-4 antibody. The current study demontsrated that late passage hMSCs can be efficiently induced into ghMSCs with better neuroprotective effect on ischemic stroke. Moreover, the results indicate that IGFBP-4 released from ghMSCs may serve as one of the key neuronal survival factors secreted from ghMSCs.


Assuntos
Isquemia Encefálica/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neuroglia/metabolismo , Neuroproteção , Acidente Vascular Cerebral/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Infarto Cerebral/patologia , Meios de Cultivo Condicionados/farmacologia , Ativação Enzimática , Glucose/deficiência , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Modelos Biológicos , Neurônios/metabolismo , Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Proteína X Associada a bcl-2/metabolismo
15.
Nat Biotechnol ; 23(2): 222-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15619617

RESUMO

RNA interference (RNAi) is the process of sequence-specific post-transcriptional gene silencing triggered by double-stranded RNAs. In attempts to identify RNAi triggers that effectively function at lower concentrations, we found that synthetic RNA duplexes 25-30 nucleotides in length can be up to 100-fold more potent than corresponding conventional 21-mer small interfering RNAs (siRNAs). Some sites that are refractory to silencing by 21-mer siRNAs can be effectively targeted by 27-mer duplexes, with silencing lasting up to 10 d. Notably, the 27-mers do not induce interferon or activate protein kinase R (PKR). The enhanced potency of the longer duplexes is attributed to the fact that they are substrates of the Dicer endonuclease, directly linking the production of siRNAs to incorporation in the RNA-induced silencing complex. These results provide an alternative strategy for eliciting RNAi-mediated target cleavage using low concentrations of synthetic RNA as substrates for cellular Dicer-mediated cleavage.


Assuntos
Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Marcação de Genes/métodos , Engenharia Genética/métodos , RNA Interferente Pequeno/genética , Ribonuclease III/química , Ribonuclease III/metabolismo , Transfecção/métodos , RNA Interferente Pequeno/química
16.
Int J Stem Cells ; 11(2): 177-186, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30408408

RESUMO

BACKGROUND AND OBJECTIVES: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. METHODS: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. RESULTS: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. CONCLUSIONS: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.

17.
BMC Mol Biol ; 8: 98, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17971228

RESUMO

BACKGROUND: Effective and stable knockdown of multiple gene targets by RNA interference is often necessary to overcome isoform redundancy, but it remains a technical challenge when working with intractable cell systems. RESULTS: We have developed a flexible platform using RNA polymerase II promoter-driven expression of microRNA-like short hairpin RNAs which permits robust depletion of multiple target genes from a single transcript. Recombination-based subcloning permits expression of multi-shRNA transcripts from a comprehensive range of plasmid or viral vectors. Retroviral delivery of transcripts targeting isoforms of cAMP-dependent protein kinase in the RAW264.7 murine macrophage cell line emphasizes the utility of this approach and provides insight to cAMP-dependent transcription. CONCLUSION: We demonstrate functional consequences of depleting multiple endogenous target genes using miR-shRNAs, and highlight the versatility of the described vector platform for multiple target gene knockdown in mammalian cells.


Assuntos
Inativação Gênica , MicroRNAs , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vetores Genéticos , Humanos , Isoenzimas/metabolismo , Rim/citologia , Lentivirus/genética , Macrófagos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Recombinação Genética , Retroviridae/genética , Transcrição Gênica , Transfecção
18.
Int J Mol Med ; 40(6): 1860-1868, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039467

RESUMO

Human bone marrow­derived mesenchymal stem cells (hMSCs) are a desirable cell source for cell­based therapy to treat nervous system injuries due to their ability to differentiate into specific cell types. In addition to their multipotency, hMSCs render the tissue microenvironment more favorable for tissue repair by secreting various growth factors. Our previous study demonstrated that hMSCs secrete several growth factors, including several insulin­like growth factor binding proteins (IGFBPs). Among these, IGFBP­6 binds with high affinity and inhibits insulin growth factor­2 (IGF­2) to inhibit the growth of IGF­2­dependent tumors. However, the function of IGFBP­6 in the nervous system remains to be fully elucidated. The present study investigated the protective effects of IGFBP­6 secreted by hMSCs on H2O2­injured primary cortical neuron cultures and lysolecithin­injured organotypic spinal cord slice cultures. Treatment of the H2O2­injured cortical neurons with conditioned media from hMSCs (hMSC­CM) increased the phosphorylation of Akt, reduced cell death and mitochondrial translocation of Bax, and regulated extracellular levels of IGF­1 and IGF­2. MTT assay, western blot analysis and ELISA were used to detect the cell viability and protein expression levels, respectively. An inhibitory antibody against IGFBP­6 eliminated this hMSC­CM­mediated neuroprotective effect in the injured cortical neuron cultures and spinal cord slice cultures. In addition, treatment with cyclolignan picropodophyllin, an inhibitor of IGF­1 receptor (IGF­1R), significantly inhibited neuronal protection by hMSC­CM. These findings demonstrated that hMSC­CM­mediated neuroprotection was attributed to IGF­1R­mediated signaling, potentiated via the inhibition of IGF­2 by IGFBP­6. The results of the present study provide insight into the mechanism by which hMSC administration may promote recovery from nerve injury.


Assuntos
Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like II/genética , Células-Tronco Mesenquimais/metabolismo , Neuroproteção/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Lisofosfatidilcolinas/toxicidade , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Podofilotoxina/administração & dosagem , Podofilotoxina/análogos & derivados , Cultura Primária de Células , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo
19.
Sci Rep ; 7(1): 10166, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860504

RESUMO

Cellular reprogramming using small molecules (SMs) without genetic modification provides a promising strategy for generating target cells for cell-based therapy. Human adipose-derived stem cells (hADSCs) are a desirable cell source for clinical application due to their self-renewal capacity, easy obtainability and the lack of safety concerns, such as tumor formation. However, methods to convert hADSCs into neural cells, such as neural stem cells (NSCs), are inefficient, and few if any studies have achieved efficient reprogramming of hADSCs into functional neurons. Here, we developed highly efficient induction protocols to generate NSC-like cells (iNSCs), neuron-like cells (iNs) and GABAergic neuron-like cells (iGNs) from hADSCs via SM-mediated inhibition of SMAD signaling without genetic manipulation. All induced cells adopted morphological, molecular and functional features of their bona fide counterparts. Electrophysiological data demonstrated that iNs and iGNs exhibited electrophysiological properties of neurons and formed neural networks in vitro. Microarray analysis further confirmed that iNSCs and iGNs underwent lineage switch toward a neural fate. Together, these studies provide rapid, reproducible and robust protocols for efficient generation of functional iNSCs, iNs and iGNs from hADSCs, which have utility for modeling disease pathophysiology and providing cell-therapy sources of neurological disorders.


Assuntos
Tecido Adiposo/citologia , Neurônios GABAérgicos/citologia , Células-Tronco Neurais/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adulto , Diferenciação Celular , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Adulto Jovem
20.
Mol Cancer Ther ; 16(9): 1866-1876, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28522588

RESUMO

Neutropenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC) and we aimed to elucidate the potential mechanism of this toxicity. To investigate whether ADCs affect neutrophil production from bone marrow, an in vitro assay was developed in which hematopoietic stem cells (HSC) were differentiated to neutrophils. Several antibodies against targets absent in HSCs and neutrophils were conjugated to MMAE via a cleavable valine-citrulline linker (vcMMAE-ADC) or MMAF via a noncleavable maleimidocaproyl linker (mcMMAF-ADC), and their cytotoxicity was tested in the neutrophil differentiation assay. Results showed that HSCs had similar sensitivity to vcMMAE-ADCs and mcMMAF-ADCs; however, vcMMAE-ADCs were more cytotoxic to differentiating neutrophils than the same antibody conjugated to mcMMAF. This inhibitory effect was not mediated by internalization of ADC either by macropinocytosis or FcγRs. Our results suggested that extracellular proteolysis of the cleavable valine-citrulline linker is responsible for the cytotoxicity to differentiating neutrophils. Mass spectrometry analyses indicated that free MMAE was released from vcMMAE-ADCs in the extracellular compartment when they were incubated with differentiating neutrophils or neutrophil conditioned medium, but not with HSC-conditioned medium. Using different protease inhibitors, our data suggested that serine, but not cysteine proteases, were responsible for the cleavage. In vitro experiments demonstrated that the purified serine protease, elastase, was capable of releasing free MMAE from a vcMMAE-ADC. Here we propose that ADCs containing protease cleavable linkers can contribute to neutropenia via extracellular cleavage mediated by serine proteases secreted by differentiating neutrophils in bone marrow. Mol Cancer Ther; 16(9); 1866-76. ©2017 AACRSee related article by Zhao et al., p. 1877.


Assuntos
Antineoplásicos/efeitos adversos , Imunoconjugados/efeitos adversos , Mielopoese/efeitos dos fármacos , Neutropenia/sangue , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Animais , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Camundongos , Neutrófilos/metabolismo , Pinocitose , Receptores de IgG/metabolismo , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA