Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Ecotoxicol Environ Saf ; 174: 384-389, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849659

RESUMO

Sediment samples were collected from a large reservoir and a river in northern Taiwan to investigate the occurrence and characteristics of Σ73PCNs analyzed. Results indicate that total concentrations of PCNs (Di- to Octa-CNs) measured in sediments collected in reservoir (29.2 ±â€¯7.11 pg/g-dw) are significantly lower than that of samples collected in river (987 ±â€¯440 pg/g-dw). The increasing trend of PCN concentration from upstream to downstream is found for the sediments collected in reservoir. PCN concentrations measured in surface sediments are relatively higher than that measured in sub-surface sediments collected in reservoir. Tetra-CNs consistently dominate in reservoir sediments, however, Penta-, Tetra- and Mono-CNs dominate in sediments collected at different sampling sites of the river investigated, suggesting that various sources contribute to PCNs collected from river. Indeed, diagnostic ratios indicate that mix-source contribute to PCNs measured in sediments collected from the reservoir and river in northern Taiwan.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Naftalenos/análise , Rios/química , Poluentes Químicos da Água/análise , Taiwan
2.
J Environ Sci (China) ; 69: 205-216, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941256

RESUMO

Double perovskite-type catalysts including La2CoMnO6 and La2CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds (VOCs), and single perovskites (LaCoO3, LaMnO3, and LaCuO3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity (GHSV) of 30,000hr-1, and the temperature range of 100-600°C for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene (C7H8) can be completely oxidized to CO2 at 300°C as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen, leading to higher activity. Additionally, apparent activation energy of 68kJ/mol is calculated using Mars-van Krevelen model for C7H8 oxidation with La2CoMnO6 as catalyst. For durability test, both La2CoMnO6 and La2CuMnO6 maintain high C7H8 removal efficiencies of 100% and 98%, respectively, at 300°C and 30,000hr-1, and they also show good resistance to CO2 (5%) and H2O(g) (5%) of the gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300-350°C, indicating that double perovskites are promising catalysts for VOCs removal.


Assuntos
Poluentes Atmosféricos/química , Compostos de Cálcio/química , Modelos Químicos , Óxidos/química , Titânio/química , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/análise , Catálise , Oxirredução , Propriedades de Superfície , Tolueno/análise , Tolueno/química , Compostos Orgânicos Voláteis/análise
3.
J Environ Sci (China) ; 56: 131-139, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571848

RESUMO

Three perovskite-type catalysts prepared by citric acid method are applied to remove phenol from gas streams with the total flow rate of 300mL/min, corresponding to a GHSV of 10,000/hr. LaMnO3 catalyst is first prepared and further partially substituted with Sr and Cu to prepare La0.8Sr0.2MnO3 and La0.8Sr0.2Mn0.8Cu0.2O3, and catalytic activities and fundamental characteristics of these three catalysts are compared. The results show that phenol removal efficiency achieved with La0.8Sr0.2Mn0.8Cu0.2O3 reaches 100% with the operating temperature of 200°C and the rate of mineralization at 300°C is up to 100%, while the phenol removal efficiencies achieved with La0.8Sr0.2MnO3 and LaMnO3 are up to 100% with the operating temperature of 300°C and 400°C, respectively. X-ray photoelectron spectroscopy (XPS) analysis shows that the addition of Sr and Cu increases the lattice oxygen of La0.8Sr0.2Mn0.8Cu0.2O3, and further increases mobility or availability of lattice oxygen. The results indicate that La0.8Sr0.2Mn0.8Cu0.2O3 has the best activity for phenol removal among three catalysts prepared and the catalytic activity of phenol oxidation is enhanced by the introduction of Sr and Cu into LaMnO3. Apparent activation energy of 48kJ/mol is calculated by Mars-Van Krevelen Model for phenol oxidation with La0.8Sr0.2Mn0.8Cu0.2O3 as catalyst.


Assuntos
Poluentes Atmosféricos/química , Modelos Químicos , Fenol/química , Compostos de Cálcio , Catálise , Oxirredução , Óxidos , Titânio
4.
J Air Waste Manag Assoc ; 65(11): 1317-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26484974

RESUMO

UNLABELLED: Activated carbon (AC) is seldom applied for recovering ketone-based volatile organic compounds because of safety concerns. Adsorption of methyl ethyl ketone (MEK) with AC is a highly exothermic reaction that potentially causes fires in AC beds. Moreover, 2,3-butanediol (BDO) is produced in the desorbed solvent, causing yellowing and odor of the recovered solvent. This study applied a continuous adsorption-desorption apparatus for evaluating the operating capacities and BDO concentration in recovered MEK containing modified and original ACs. AC-1 (TAKETA- G2X) was used as the target for modification. The experimental results indicate that using MgO as the modifier increases the ignition point by 12°C and that applying KNO3 as the modifier reduces the AC ignition point by 28°C (compared with AC-1). The BDO concentration of the desorbed MEK solvent can be reduced by increasing the loading of the modifying agent (Ethanolamine) (Im-1: 3.1 wt%; Im-5: 6.2 wt%). Moreover, applying the AC pretreated with nitrogen (Im-6) as adsorbent significantly reduces the BDO concentration (from 0.123 wt% to 0.073 wt%). Because desorption and purging procedures were performed in N2 atmospheres, the BDO concentrations of the desorbed MEK solvents were relatively low and ranged from 0.032 wt% to 0.043 wt%. When the MEK concentration was reduced to 2000 ppm, lower BDO concentrations (0.012-0.022 wt%) were measured in the recovered MEK solvent. The way to modify activated carbon and a better desorbing sequence to effectively inhibit the oxidation of MEK to BDO are developed. The results obtained indicate that the BDO concentration in the desorbed solvent was lower than the original MEK solvent (0.023 wt%). Different approaches can be applied simultaneously to achieve high inhibition effects; however, carbon adsorption performance may be negatively affected. IMPLICATIONS: The study is motivated to improve the quality of recovered solvent and reduce fire hazards, particularly when AC is applied for adsorbing a ketone-based solvent (e.g., MEK). The experimental results indicate that the BDO concentration in the recovered solvent can be reduced and the ignition point of AC can be increased by modifying the AC with an appropriate agent.


Assuntos
Butanonas/química , Butileno Glicóis/análise , Carvão Vegetal/química , Solventes/química , Eliminação de Resíduos Líquidos/métodos , Adsorção
5.
Environ Sci Technol ; 48(7): 3995-4001, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24617498

RESUMO

Tests were conducted to study the removal efficiencies (REs) of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from flue gas during a test program involving a pilot-scale catalytic filter (CF) module and a full-scale municipal solid waste incinerator (MSWI). The REs attained with the CF on a side stream and a conventional activated carbon (AC) injection and baghouse filtration system in the full-scale MSWI are evaluated via simultaneous sampling and analysis of both gas- and particle-phase PCDD/Fs. Flue gas without AC is supplied to the pilot-scale CF module for evaluating its RE capabilities. The REs achieved with the CF at 180 °C are 96.80 and 99.50%, respectively, for the gas phase and the particulate contained. The gas-phase PCDD/F RE rises significantly at 200 and 220 °C. The air/cloth (A/C) ratio defined as is the gas flow rate (m(3)/min) divided by the filtration area (m(2)) also affects the PCDD/F RE, especially in the gas phase. At 180 °C, a RE of gas-phase PCDD/Fs of 95.94% is attained with the CF at 0.8 m/min, yet it decreases at higher A/C ratios (1 and 1.2 m/min). A significantly lower toxic equivalency (TEQ) concentration (0.71 ng I-TEQ/g) was measured in the filter dust of the CF module compared to that collected by the AC adsorption system (4.18 ng I-TEQ/g), apparently because of the destruction of gas-phase PCDD/Fs by the catalyst.


Assuntos
Dioxinas/isolamento & purificação , Filtração/métodos , Adsorção , Benzofuranos/isolamento & purificação , Catálise , Carvão Vegetal/química , Cidades , Dibenzofuranos Policlorados , Gases/análise , Incineração/instrumentação , Projetos Piloto , Resíduos Sólidos/análise
6.
J Air Waste Manag Assoc ; 64(11): 1260-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25509547

RESUMO

Direct decomposition of N2O by perovskite-structure catalysts including La2NiO4, LaSrNiO4, and La0.7Ceo.3SrNiO4 was investigated. The catalysts were prepared by the Pechini method and characterized by x-ray diffraction (XRD), BETI scanning electron microscopy (SEM), and 02-TPD. Experimental results indicate that the properties of La2NiO4 are significantly improved by partially substituting La with Sr and Ce. N2O decomposition efficiencies achieved with LaSrNi04 and La0.7Ce0.3SrNiO4 are 44 and 36%, respectively, at 400 degrees C. As the temperature was increased to 600 degrees C, N2O decomposition efficiency achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reached 100% at an inlet N2O concentration of 1000 ppm, while the space velocity was fixed at 8,000 hr(-1). In addition, effects of various parameters including oxygen, water vapor and space velocity were also explored. The results indicate that N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are not significantly affected as space velocity is increased from 8,000 to 20,000 hr(-1), while La0.7Ce0.3SrNiO4 shows better tolerance for O2 and H2O(g). On the other hand, N2 yield with LaSrNiO4 as catalyst can be significantly improved by doping Ce. At a gas hour space velocity of 8000 hr(-1) and a temperature of 600 degrees C, high N2O decomposition efficiency and N2 yield were maintained throughout the durability test of 60 hr, indicating the long-term stability of La0.7Ce0.3SrNiO4 for N2O decomposition.


Assuntos
Óxido Nitroso/química , Óxidos/química , Poluentes Atmosféricos/química , Catálise , Cério/química , Microscopia de Força Atômica , Oxigênio , Vapor , Estrôncio/química , Temperatura
7.
J Environ Sci (China) ; 26(12): 2546-53, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499503

RESUMO

Mn(x)Ce(1)-(x)O(2) (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO(2) to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuO(x) into Mn(0.5)Ce(0.5)O(2). With ozone catalytic oxidation, HCHO (61 ppm) in gas stream was completely oxidized by adding 506 ppm O3over Mn(0.5)Ce(0.5)O(2) catalyst with a GHSV (gas hourly space velocity) of 10,000 hr⁻¹ at 25°C. The effect of the molar ratio of O(3) to HCHO was also investigated. As O(3)/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O(3)/HCHO ratio of 8, the mineralization efficiency of HCHO to CO(2) was 86.1%. At 25°C, the p-type oxide semiconductor (Mn(0.5)Ce(0.5)O(2)) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO(2), which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000 hr⁻¹, [O(3)]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Cério/química , Formaldeído/isolamento & purificação , Compostos de Manganês/química , Ozônio/química , Catálise , Ácido Cítrico/química , Temperatura Alta , Oxirredução
8.
Environ Sci Pollut Res Int ; 31(27): 39432-39438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819506

RESUMO

Fly ash generated from municipal waste incineration (MWI) contains various toxic substances, and it has to be properly treated before disposal or reuse. Water washing and thermal pyrolysis can improve the destruction efficiency of PCDD/Fs in fly ash generated from municipal solid waste incinerators. Since sulfur oxides and nitrogen compounds generated by the heating of the sewage sludge poison the catalytic active sites for PCDD/Fs formation on fly ash surface, co-pyrolysis of fly ash with sewage sludge effectively inhibits precursor formation and de novo synthesis reaction, resulting in the great reduction of PCDD/F formation. The results of the pyrolysis at 350 °C show that the PCDD/Fs removal efficiencies based on mass concentration are over 99%. The results at 350 °C of different reaction times show that the reaction time of 10 min is sufficient to reach the European End of Waste criteria (≤ 20 pg TEQ/g) when the ratio of fly ash/sewage sludge is controlled at 1:1.


Assuntos
Cinza de Carvão , Incineração , Dibenzodioxinas Policloradas , Pirólise , Esgotos , Cinza de Carvão/química , Esgotos/química
9.
Environ Sci Pollut Res Int ; 30(10): 25920-25932, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36352070

RESUMO

Modification of α-Al2O3 (A) with cerium (C), zirconium (Z), and sulfate (S) for effective C4F8 removal is evaluated at temperatures ≤ 650 °C. Catalytic hydrolysis of C4F8 is conducted to compare the performance of catalysts prepared (namely, A, AC, AZ, AS, ACS, and AZS). The interplay between rare earth element, acid amount, and surface area is further investigated. An investigation was carried out by characterization of catalysts by using XRD, BET, and NH3-TPD. XRD pattern of the modified α-Al2O3 catalyst shows that the average grain size is 37 nm. BET analysis indicates that the surface area increases with the addition of Ce and Zr, while NH3-TPD analysis shows the improvement of acid sites after the addition of Ce, Zr, and SO42-. The experimental results indicate that C4F8 conversion over A catalyst reaches 14.81% at 550 °C with the addition of 38% H2O(g). Under the same operating condition, C4F8 conversion efficiencies achieved with AC and AZ catalysts increase to 42.03% and 50.1%, respectively. Furthermore, the efficiencies over AS, ACS, and AZS catalysts increase to 49.85%, 86.94%, and 87.18%, respectively. Stability tests show that the performances of the catalysts for C4F8 conversion are with the order of AZS > ACS > AZ > AC > AS > A at 650 °C during 24 h. The activation energy of the AZS catalyst in catalytic hydrolysis of C4F8 is 60.49 kJ/mol. The products of C4F8 conversion mainly include CO2, CO, and COF2 and small amounts of CHF3 and C2F4. This study has confirmed that the AZS catalyst shows the best activity, acidity, and stability on C4F8 removal.


Assuntos
Cério , Zircônio , Oxirredução , Sulfatos , Óxidos de Enxofre , Catálise
10.
Environ Sci Pollut Res Int ; 30(12): 32696-32709, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36469276

RESUMO

Manganese oxide-based catalysts have attracted extensive attention due to their relatively low cost and remarkable performance for removing VOCs. In this research, we used the Pechini method to synthesize manganese-cerium-nickel ternary oxide catalysts (MCN) and evaluated the effectiveness of catalytic destruction of formaldehyde (HCHO) and ozone at room temperature. FeOx prepared by the impregnation method was applied to modify the catalyst. After FeOx treatment, the catalyst represented the best performance on both HCHO destruction and ozone decomposition under dry conditions and exhibited excellent water vapor resistance. The as-prepared catalysts were next characterized via H2-temperature programmed reduction (H2-TPR), temperature programmed desorption of O2 (O2-TPD), and X-ray photoelectron spectroscopy (XPS), and the results demonstrated that addition of FeOx increased Mn3+ and Ce3+ concentrations, oxygen vacancies and surface lattice oxygen species, facilitated adsorption, and redox properties. Based on the results of in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS), possible mechanisms of ozone catalytic oxidation of HCHO were proposed. Overall, the ternary mixed-oxide catalyst developed in this study holds great promise for HCHO and ozone decomposition in the indoor environment.


Assuntos
Ozônio , Ozônio/química , Oxirredução , Óxidos/química , Oxigênio , Catálise , Formaldeído/química
11.
Environ Sci Pollut Res Int ; 30(48): 106068-106082, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726623

RESUMO

A unique triple perovskite-type catalyst was successfully synthesized using the simple sol-gel approach, and surface acid modification was added to improve the ozone catalytic oxidation (OZCO) process ability to remove toluene more effectively. Our study indicates that La3MnCuNiO9 catalyst treated with KMnO4 shows the best toluene oxidation activity. At 250 °C, the rates of conversion and mineralization were 100% and 83%, respectively, under thermal catalytic system when C7H8 concentration = 500 ppm. During the OZCO system ([C7H8] = 20 ppm, O3/C7H8=8; room temperature), for 6 h, the conversion rate remained at 100%. The high ratios of Mn4+/(Mn4++Mn3+), Cu2+, and abundant surface oxygen species, high specific surface area, and pore volume lead to remarkable catalytic performance of this catalyst. Meanwhile, the catalyst contributes to superior stability and water resistance. The catalytic mechanism of La3MnCuNiO9 after KMnO4 treatment in the context of OZCO was further discussed. Overall, after KMnO4 treatment, the La3MnCuNiO9 catalyst reveals extraordinary catalytic activity and excellent stability combination of this catalyst with ozone exhibits high toluene removal efficiency in the OZCO system and has a good potential for industrial applications.


Assuntos
Ozônio , Tolueno , Óxidos , Oxirredução , Catálise
12.
J Air Waste Manag Assoc ; 72(1): 85-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652988

RESUMO

Sampling and analysis of filterable particulate matter (FPM), FPM2.5, condensable particulate matter (CPM), polycyclic aromatic hydrocarbons (PAHs), sulfur oxides (SOx), and nitrogen oxides (NOx) emitted from a coal-fired boiler equipped with selective catalytic reduction (SCR)+ electrostatic precipitator (ESP) + wet flue gas desulfurization (WFGD) + wet electrostatic precipitator (WESP) as air pollution control devices (APCDs) are conducted. The results show that NOx concentration emitted from the coal-fired boiler is 56 ± 2.17 ppm (with the NOx removal efficiency of 47.2%), which does not meet the best available control technology (BACT) emission standard (≤ 30 ppm). On the other hand, the WFGD adopted has a good removal efficiency for SOx and HCl. Both SOx and HCl emission concentrations are < 1 ppm, and removal efficiencies are > 99%. The FPM and FPM2.5 emitted from the coal-fired boiler are 0.9 ± 0.06 mg/Nm3 and < 0.09 ± 0.006 mg/Nm3, respectively. The overall removal efficiency of FPM achieved with ESP+WFGD+WESP+MGGH is 99.98%. However, high concentration of CPM (37.4 ± 6.3 mg/Nm3) is measured, which is significantly higher than FPM and FPM2.5. The concentrations of 27 PAHs at the WESP inlet and stack are measured as 667 ng/Nm3 and 547 ng/Nm3, respectively while the removal efficiencies of gas- and solid-phase PAHs are 9% and 58%, respectively. The results show that APCDs adopted are not effective in removing PAHs (only 18%), and gas-phase PAHs contribute the most in the total PAH emission. In addition, the benzo(a)pyrene equivalent (BaPeq) concentration emitted from the stack is 28.8 ng-BaPeq/Nm3, and most of it is contributed by 4-6 ring PAHs with high toxic equivalent factors (TEFs). Furthermore, the emission factors of air pollutant emitted from coal-fired boilers equipped with different combinations of APCDs are compiled and compared. The results show that except for CPM and NOx, the emission factors of air pollutant calculated for this coal-fired boiler are lower if compared with other studies.Implications: Primary particles discharged from coal-fired processes include filterable particulate matter (FPM) and condensable particulate matter (CPM). PM2.5 emissions would be greatly underestimated if CPM is ignored. Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (SVOCs) formed by two or more fused benzene rings. PAHs have attracted much public attention because of toxicity and carcinogenicity. This study selects one coal-fired boiler with the best available control technology (BACT) to simultaneously measure the concentrations of PM, PAHs, and gaseous pollutants at the inlet and outlet of air pollution control devices (APCDs) to understand the efficacy of APCDs adopted and pollutant emission intensity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Carvão Mineral/análise , Material Particulado/análise , Centrais Elétricas
13.
Environ Sci Pollut Res Int ; 29(29): 44054-44066, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122647

RESUMO

This is the first investigation on overall characteristics of 25 polycyclic aromatic hydrocarbons (PAHs) (15 PAHs regulated by US-EPA (excluding naphthalene) and 16 PAHs recommended by the European Union) in ambient air of Ho Chi Minh City, Vietnam. Their levels, congener profiles, gas/particle partitioning, potential sources of atmospheric PAHs (gas and particulate phases), and lung cancer risks in the dry and rainy seasons were examined. The ∑25 PAH concentration in the dry and rainy seasons ranged from 8.79 to 33.2 ng m-3 and 26.0 to 60.0 ng m-3, respectively. Phenanthrene and Indeno[123-cd]pyrene were major contributors to gaseous and particulate PAHs, respectively, while benzo[c]fluorene was dominant component of the total BaP-TEQ. The ∑16 EU-PAH concentration contributed to 13 ± 2.7% of the total ∑ 25 PAH concentration; however, they composed over 99% of the total ∑ 25 PAH toxic concentration. Adsorption mainly governed the phase partitioning of PAHs because the slope of correlation between logKp and logP0L was steeper than - 1. Vehicular emission was the primary source of PAHs in two seasons; however, PAHs in the dry season were also originated from biomass burning. Assessment of lung cancer risk showed that children possibly exposed to potential lung cancer risk via inhalation.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Criança , Carvão Mineral , Poeira , Monitoramento Ambiental , Gases , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano , Vietnã
14.
Environ Sci Pollut Res Int ; 28(41): 57619-57628, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34089162

RESUMO

Octafluorocyclobutane (C4F8) with a GWP100 (global warming potential) of 10,000 times of CO2 is listed as potent greenhouse gas. Therefore, development of effective control technologies for reducing C4F8 emissions has become an emerging issue to be addressed. In this study, decomposition of C4F8 was investigated via three systems including catalytic hydrolysis, non-thermal plasma, and plasma catalysis, respectively. Decomposition of C4F8 achieved with catalytic hydrolysis reaches the highest efficiency of 20.1%, being obtained with γ-Al2O3 as catalyst in the presence of 10% H2O(g) and operating temperature of 800 °C. For plasma-based system, the highest C4F8 conversion obtained with non-thermal plasma is 62% at a voltage of 23 kV. As for the plasma catalysis system, 100% C4F8 conversion efficiency can be achieved at an applied voltage of 22-23 kV. The effects of various parameters such as gas flow rate and C4F8 concentration on plasma-based system show that the plasma catalysis also has better resistivity for the high gas flow rate. The highest energy efficiency of 0.75 g/kWh is obtained for the gas flow rate of 500 mL/min, with the C4F8 conversion of 41%. The highest conversion 89% was achieved with the O2 content of 0.5%. Addition of Ar improves the performance of plasma-based system. When Ar is controlled at 20%, C4F8 conversions obtained with plasma catalysis reach 100% at applied voltage of 22-23 kV even in the presence of 5% O2. The main products of the C4F8 conversion include CO2, NOx, and COF2 when O2 is added into the system. As water vapor is added, HF is also formed. This study has confirmed that combined non-thermal plasma with catalyst system to convert C4F8 is indeed feasible and has good potential for further development.


Assuntos
Poluição do Ar , Catálise
15.
Environ Sci Pollut Res Int ; 28(48): 69210-69220, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34296414

RESUMO

PM2.5 and polycyclic aromatic hydrocarbons (PAHs) emitted from various sources may cause respiratory disease and lung cancer. Additionally, PAHs deposited on PM2.5 would aggravate the hazard to human health once inhaled. Therefore, it is essential to investigate the PAHs adsorbed on PM2.5 in ambient air. However, analysis of PAHs on PM2.5 is limited so far due to high detection limit of the analytical method and complex pretreatment procedures of the sample. In this study, thermal desorption (TD) is combined with GC-HRMS for direct analysis of PAHs on PM2.5 collected by the filter without pretreatment. The results indicate that distribution of PAHs on the filter is uniform and each filter section is representative for direct analysis of PAHs on PM2.5. The optimal thermal desorption temperature and purge time of analysis are found at 320°C and 60 s, respectively. Furthermore, the PAHs on PM2.5 of ambient air in Taiwan including traffic area, industrial area, suburban area, and background site are investigated. The results indicate that the concentrations of PAHs on PM2.5 in ambient air of Northern, Central, and Eastern Taiwan are in the range of 0.13-6.63 ng/m3, with an average concentration of 2.23 ng/m3. The PAH concentration measured in winter is significantly higher than that in summer, and the concentration of PAHs on PM2.5 ranges from 0.071 to 0.280 ng/µg while the average concentration is 0.133 ng/µg. The technology optimized in this study can be applied for rapid and accurate measurement of PAHs present on fine particles.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano
16.
Chemosphere ; 280: 130645, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33933998

RESUMO

Concentrations and distributions of PAHs and chlorinated aromatic compounds including PCDD/Fs, dl-PCBs, chlorophenols (CPs), and chlorobenzenes (CBz) in the municipal waste incinerator are investigated to characterize their formation and emission via intensive stack sampling. In addition, the toxicity of fly ash contribution by PCDD/Fs and dl-PCBs is evaluated in this study. The results reveal that concentrations of PCDD/Fs and dl-PCBs in flue gas are significantly lower than those of CPs, CBz, and PAHs. Additionally, the removal efficiencies of PAHs and chlorinated aromatic compounds achieved with existing air pollution control devices are evaluated, indicating that the removal efficiencies achieved with activated carbon injection + baghouse (95-99%) are higher than those with semi-dry scrubber (SDS). Besides, PCDD/Fs and PCBs TEQ concentrations in SDS and BH ashes are within 1.61-2.66 WHO-TEQ/g and 0.09-0.19 WHO-TEQ/g, respectively. Furthermore, the calculated mass flow rates suggest that the input rate of PCDD/Fs and dl-PCBs of SDS are 60.24 mg/h and 59.74 mg/h, respectively. The mass flow rates of PCDD/Fs and dl-PCBs after SDS in flue gas are 32.47 mg/h and 49.73 mg/h, respectively. However, the discharge rates of PCDD/Fs and dl-PCBs from SDS are 120.60 mg/h and 27.05 mg/h, respectively, indicating that PCDD/Fs are significantly formed within the SDS. PCDD/Fs formation is attributed to the operating temperature of SDS (240 ± 11.5 °C), which is within the temperature window for de novo synthesis. Thus, operating parameters of the APCDs should be optimized to reduce the formation of PAHs and chlorinated aromatic pollutants from MWI.


Assuntos
Poluentes Atmosféricos , Clorofenóis , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Poluentes Atmosféricos/análise , Clorobenzenos/análise , Dibenzofuranos , Dibenzofuranos Policlorados/análise , Incineração , Resíduos Industriais/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise
17.
Sci Rep ; 11(1): 8093, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854096

RESUMO

This study aimed to find the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fine particulate matter from different stationary emission sources (coal-fired boiler, CFB; municipal waste incinerator, MWI; electric arc furnace, EAF) in Taiwan and the relationship between PM2.5 and PM2.5-bound PCDD/Fs with Taiwanese mortality risk. PM2.5 was quantified using gravimetry and corresponding chemical analyses were done for PM2.5-bound chemicals. Mortality risks of PM2.5 exposure and PCDD/Fs exposure were calculated using Poisson regression. The highest concentration of PM2.5 (0.53 ± 0.39 mg/Nm3) and PCDD/Fs (0.206 ± 0.107 ng I-TEQ/Nm3) was found in CFB and EAF, respectively. Higher proportions of PCDDs over PCDFs were observed in the flue gases of CFB and MWI whereas it was reversed in EAF. For ambient air, PCDD/F congeners around the stationary sources were dominated by PCDFs in vapor phase. Positive matrix factorization (PMF) analysis found that the sources of atmosphere PCDD/Fs were 14.6% from EAF (r = 0.81), 52.6% from CFB (r = 0.74), 18.0% from traffic (r = 0.85) and 14.8% from MWI (r = 0.76). For the dioxin congener distribution, PCDDs were dominant in flue gases of CFB and MWI, PCDFs were dominant in EAF. It may be attributed to the different formation mechanisms among wastes incineration, steel-making, and coal-burning processes.

18.
Chemosphere ; 243: 125443, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31995890

RESUMO

Long-term sampling is essential for monitoring the air pollutants emitted from stack since it can monitor the pollutants emission continuously including the stages of start-up, shutdown and normal operation. However, commercial continuous sampling equipment such as AMESA faces the challenges of high weight and complicated sampling procedures. This study has developed a long-term and automatic sampling system (National Central University continuous stack sampling system, NCU-CS3), and compared the efficiency with manual sampling train (MST). The results indicate that relative standard deviation (RSD) of PCDD/Fs concentrations measured between NCU-CS3 and MST is <20%, demonstrating that the difference between NCU-CS3 and MST in measuring PCDD/Fs is insignificant. Besides, the effects of adsorbent temperature, adsorbent amount and type of adsorbent on breakthroughs of PAHs and unintentional-persistent organic pollutants (UPOPs) such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), chlorinated phenols (CPs), chlorinated benzenes (CBs) and polychlorinated naphthalenes (PCNs) are evaluated. The results indicate that the breakthrough of pollutants increases with increasing temperature of XAD-2 and decreases with increasing XAD-2 amount. Moreover, XAD-4 is used as alternative adsorbent to test the breakthrough and the results indicate that the breakthroughs of UPOPs of XAD-4 as adsorbent are lower than that with XAD-2 due to higher specific surface area of XAD-4. Furthermore, the residual of PCDD/Fs with NCU-CS3 as the sampling train is relatively low (1.5-3.8%), which meets the regulation of EN 1948-5 (10%).


Assuntos
Poluentes Atmosféricos/análise , Dibenzofuranos Policlorados/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Dibenzodioxinas Policloradas/análise , Benzofuranos/análise , Dibenzofuranos/análise , Poluentes Ambientais/análise , Estudos Longitudinais , Naftalenos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
19.
Environ Pollut ; 258: 113759, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874436

RESUMO

This study investigates the characteristics of PCN emission and removal from two secondary copper metallurgical processes (plants A and B) equipped with different air pollution control devices (APCDs). Different operating conditions and feeding materials result in varying emission factors of PCNs from two plants. The average PCN concentration emitted from plant B (7597 ng Nm-3) is significantly higher than that emitted from plant A (32.5 ng Nm-3) and those reported in China (5.8-2845 ng Nm-3). Similar trend is found for fly ash samples collected from two plants. Low chlorinated homologues (Mono-to Tri-CNs) are the major contributors to total PCNs measured in flue gas, fly ash and slag samples. Combination of semi-dry absorber, activated carbon injection and baghouse is effective for PCN removal in plant A, with the overall removal efficiency of 98%. The overall removal efficiency of PCNs achieved with APCDs equipped in plant B is 90%, however, increases of some homologues as the flue gases passing through baghouse and wet scrubber are found, suggesting the occurrence of memory effect within baghouse and wet scrubber.


Assuntos
Poluentes Atmosféricos/análise , Cobre , Monitoramento Ambiental , Metalurgia , Carbonitrila de Pregnenolona/análise , China , Cinza de Carvão , Naftalenos
20.
Chemosphere ; 252: 126541, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32217411

RESUMO

Emission factor and removal efficacy of PCNs are evaluated via the flue gas sampling of two MWIs equipped with different air pollution control devices (APCDs) in Taiwan. MWI-A is equipped with ESP, wet scrubber (WS) and selective catalytic reduction (SCR), while cyclone (CY), semi-dry absorber (SDA), activated carbon injection (ACI) and baghouse (BH) are employed in MWI-B. The average concentrations of PCNs measured at stacks of MWI-A and MWI-B are 2.1 ng Nm-3 (0.218 pg TEQ Nm-3) and 23.2 ng Nm-3 (0.425 pg TEQ Nm-3), respectively. The emission factors of PCNs calculated from feeding rates of waste and stack sampling results range from 6.7 to 6.95 µg t-1 (0.790-1.45 ng TEQ t-1). PCNs are formed in ESP via chlorination, while SCR and SDA + ACI + BH are effective in removing PCNs with the overall efficacies of 97.6% and 94.3%, respectively. PCN removal efficiencies achieved with SCR and SDA + ACI + BH increase as chlorination level increases. Specifically, around 72% and 82% of Mono-CN are removed by SCR and SDA + ACI + BH, respectively. The removal efficacies of other homologues achieved with SCR are consistently high (96-100%). Dominances of Mono-to Tri-CNs in scrubbing liquid collected from WS and higher removal efficacies of these homologues achieved with WS + ESP compared with ESP alone indicate that WS can capture low chlorinated PCNs to some extent. The results suggest that CY + SDA + ACI + BH should be equipped in MWI for effective removal of PCNs, while ESP, WS and SCR should be utilized with precaution to eliminate PCNs formation and enhance the PCNs removal efficiency.


Assuntos
Monitoramento Ambiental , Incineração/métodos , Naftalenos/química , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Catálise , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA