Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693487

RESUMO

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Assuntos
Aflatoxinas , Aspergillus flavus , Genoma Fúngico , Família Multigênica , Metabolismo Secundário , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo , Metabolismo Secundário/genética , Zea mays/microbiologia , Zea mays/genética , Estudo de Associação Genômica Ampla , Genes Fúngicos , Sequenciamento Completo do Genoma , Variação Genética
2.
Fungal Genet Biol ; 170: 103863, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154756

RESUMO

Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.


Assuntos
Aflatoxinas , Indóis , Peptídeos Cíclicos , Humanos , Aflatoxinas/genética , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Sistemas CRISPR-Cas , Comércio , Internacionalidade , Família Multigênica , DNA/metabolismo
3.
Appl Microbiol Biotechnol ; 104(6): 2277-2286, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31974722

RESUMO

Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic precursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and other pigments could facilitate strategies to mitigate fungal pathogenesis.


Assuntos
Aspergillus/metabolismo , Vias Biossintéticas , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/metabolismo , Melaninas/biossíntese , Metabolismo Secundário
4.
Appl Microbiol Biotechnol ; 103(12): 4889-4897, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31037381

RESUMO

Conidia are asexual spores and play a crucial role in fungal dissemination. Conidial pigmentation is important for tolerance against UV radiation and contributes to survival of fungi. The molecular basis of conidial pigmentation has been studied in several fungal species. In spite of sharing the initial common step of polyketide formation, other steps for pigment biosynthesis appear to be species-dependent. In this study, we isolated an Aspergillus flavus spontaneous mutant that produced yellow conidia. The underlying genetic defect, a three-nucleotide in-frame deletion in the gene, AFLA_051390, that encodes a copper-transporting ATPase, was identified by a comparative genomics approach. This genetic association was confirmed by disruption of the wild-type gene. When yellow mutants were grown on medium supplemented with copper ions or chloride ions, green conidial color was partially and nearly completely restored, respectively. Further disruption of AFLA_045660, an orthologue of Aspergillus nidulans yA (yellow pigment) that encodes a multicopper oxidase, in wild type and a derived strain producing dark green conidia showed that it yielded mutants that produced gold conidia. The results placed formation of the gold pigment after that of the yellow pigment and before that of the dark green pigment. Using reported inhibitors of DHN-melanin (tricyclazole and phthalide) and DOPA-melanin (tropolone and kojic acid) pathways on a set of conidial color mutants, we investigated the involvement of melanin biosynthesis in A. flavus conidial pigment formation. Results imply that both pathways have no bearing on conidial pigment biosynthesis of A. flavus.


Assuntos
Aspergillus flavus/enzimologia , ATPases Transportadoras de Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/enzimologia , Aspergillus flavus/genética , ATPases Transportadoras de Cobre/genética , Proteínas Fúngicas/genética , Deleção de Genes , Genômica , Melaninas/biossíntese , Mutação , Oxirredutases/metabolismo , Pigmentação/genética , Esporos Fúngicos/genética
5.
Anal Chem ; 90(24): 14331-14338, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444348

RESUMO

Aflatoxins, highly toxic and carcinogenic to humans, are synthesized via multiple intermediates by a complex pathway in several Aspergilli, including Aspergillus flavus. Few analytical methods are available for monitoring the changes in metabolite profiles of the aflatoxin biosynthesis pathway under different growth and environmental conditions. In the present study, we developed by a D-optimal mixture design a solvent system, methanol/dichloromethane/ethyl acetate/formic acid (0.36/0.31/0.32/0.01), that was suitable for extracting the pathway metabolites. The matrix effect from dilution of cell extracts was negligible. To facilitate the identification of these metabolites, we constructed a fragmentation ion library. We further employed liquid chromatography coupled with high-resolution mass spectroscopy (UHPLC-HRMS) for simultaneous quantification of the metabolites. The limit of detection (LOD) and limit of quantitation (LOQ) were 0.002-0.016 and 0.008-0.05 µg/kg, respectively. The spiked recovery rates ranged from 81.3 to 100.3% with intraday and interday precision less than 7.6%. Using the method developed to investigate the time-course aflatoxin biosynthesis, we found that precursors, including several possible toxins (with a carcinogenic group similar to aflatoxin B1), occurred together with aflatoxin, and that production increased rapidly at the early growth stage, peaked on day four, and then decreased substantially. The maximum production of aflatoxin B1 and aflatoxin B2 occurred 1 day later. Moreover, the dominant branch pathway was the one for aflatoxin B1 formation. We revealed that the antiaflatoxigenicity mechanism of Leclercia adecarboxylata WT16 was associated with a factor upstream of the aflatoxin biosynthesis pathway. The design strategies can be applied to characterize or detect other secondary metabolites to provide a snapshot of the dynamic changes during their biosynthesis.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Espectrometria de Massas , Aflatoxinas/química , Aflatoxinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos , Solventes/química
6.
Appl Microbiol Biotechnol ; 102(12): 5209-5220, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29696338

RESUMO

Many glycosylphosphatidylinositol-anchored proteins (GPI-APs) of fungi are membrane enzymes, organization components, and extracellular matrix adhesins. We analyzed eight Aspergillus flavus transcriptome sets for the GPI-AP gene family and identified AFLA_040110, AFLA_063860, and AFLA_113120 to be among the top 5 highly expressed genes of the 36 family genes analyzed. Disruption of the former two genes did not drastically affect A. flavus growth and development. In contrast, disruption of AFLA_113120, an orthologue of Saccharomyces cerevisiae ECM33, caused a significant decrease in vegetative growth and conidiation, promoted sclerotial production, and altered conidial pigmentation. The A. flavus ecm33 null mutant, compared with the wild type and the complemented strain, produced predominantly aflatoxin B2 but accumulated comparable amounts of cyclopiazonic acid. It showed decreased sensitivity to Congo red at low concentrations (25-50 µg/mL) but had increased sensitivity to calcofluor white at high concentrations (250-500 µg/mL). Analyses of cell wall carbohydrates indicated that the α-glucan content was decreased significantly (p < 0.05), but the contents of chitin and ß-glucan were increased in the mutant strain. In a maize colonization study, the mutant was shown to be impaired in its infectivity and produced 3- to 4-fold lower amounts of conidia than the wild type and the complemented strain. A. flavus Ecm33 is required for proper cell wall composition and plays an important role in normal fungal growth and development, aflatoxin biosynthesis, and seed colonization.


Assuntos
Aflatoxinas/genética , Aspergillus flavus/fisiologia , Proteínas Fúngicas/genética , Zea mays/microbiologia , Aflatoxinas/biossíntese , Aspergillus flavus/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Esporos Fúngicos/genética , Transcriptoma
7.
Mol Plant Microbe Interact ; 30(5): 361-373, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28447887

RESUMO

Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene approaches to identify novel components of maize resistance to Aspergillus ear rot.


Assuntos
Aspergillus flavus/patogenicidade , Indóis/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Alelos , Aspergillus flavus/genética , Aspergillus flavus/isolamento & purificação , Vias Biossintéticas/efeitos dos fármacos , ATPases Transportadoras de Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Genes de Plantas , Variação Genética , Endogamia , Indóis/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Solo , Sítio de Iniciação de Transcrição , Zea mays/citologia , Zea mays/efeitos dos fármacos , Zea mays/genética
8.
Fungal Genet Biol ; 104: 29-37, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442441

RESUMO

Aspergillus flavus aswA (AFLA_085170) is a gene encoding a Zn(II)2Cys6 DNA-binding domain and a transcriptional activation domain, DUF3468. Disruption of aswA yielded strains that made a truncated gene transcript and generated a fungus that produced a greatly increased number of sclerotia. These sclerotia were odd-shaped and non-pigmented (white) and different from oval and pigmented (dark brown to black) mature sclerotia. Transcriptomic analysis of the ΔaswA strain grown on potato dextrose agar plates and Wickerham agar plates showed that expression of clustering genes involved in the biosynthesis of three sclerotium-associated secondary metabolites was down-regulated. These included gene clusters of asparasone, aflatrem, and aflavarin. In contrast, those of aflatoxin, cyclopiazonic acid and kojic acid were not affected. Metabolite analyses confirmed that the non-pigmented sclerotia contained aflatoxin and cyclopiazonic acid but not other aforementioned metabolites, three asparasone analogs and dihydroxyaflavinine commonly present in mature sclerotia. Impairment in aswA gene function stalls normal sclerotial development, which in turn prevents biosynthesis and accumulation of sclerotium-specific metabolites.


Assuntos
Aspergillus flavus/genética , Genes Fúngicos , Antraquinonas/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Indóis/metabolismo , Domínios Proteicos , Metabolismo Secundário/genética
9.
Fungal Genet Biol ; 68: 39-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24780887

RESUMO

Aspergillus flavus is a ubiquitous saprophyte and is capable of producing many secondary metabolites including the carcinogenic aflatoxins. The A. flavus population that produces small sclerotia (S strain) has been implicated as the culprit for persistent aflatoxin contamination in field crops. We investigated how the plant volatile decanal, a C10 fatty aldehyde, affected the growth and development of the S strain A. flavus. Decanal treatment yielded fluffy variants lacking sclerotia and conidia and exhibiting a dosage-dependent radial colony growth. We used RNA-Seq analysis to examine transcriptomic changes caused by decanal and after removal of decanal. Mature sclerotia contained only 80% of the total transcripts detected in all samples in comparison to 94% for the decanal treated culture. Gene ontology (GO) analysis showed that decanal treatment increased expression of genes involved in oxidoreductase activity, cellular carbohydrate metabolism, alcohol metabolism and aflatoxin biosynthesis. The treatment affected cellular components associated with cell wall, and gene expression of glucanases, α-amylases, pectinesterase and peptidase required for its biosynthesis was increased. After decanal was removed, the culture resumed sclerotial production. Moreover, its GO terms significantly overlapped with those of the untreated culture; five of the enriched molecular functions, oxidoreductase activity, monooxygenase activity, electron carrier activity, heme binding, and iron binding were found in the untreated culture. The GO term of cellular component enriched was mainly integral protein constituents of the membrane. The results suggested that decanal halted development at the vegetative state rendering the fungus unable to produce conidia and sclerotia. The induced fluffy phenotype could be related to lower transcript abundance of flbB, flbD, and flbE but not to veA expression. Increased abundance of the laeA transcript in the treated culture correlated with early transcriptional activation of aflatoxin and kojic acid biosynthesis gene clusters. Expression profiles revealed subtle differences in timing of activation of the respective 55 secondary metabolite gene clusters.


Assuntos
Aldeídos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aflatoxinas/metabolismo , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/fisiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Micélio/efeitos dos fármacos , Micélio/fisiologia , Pironas/metabolismo , Análise de Sequência de RNA , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Ativação Transcricional
10.
ScientificWorldJournal ; 2014: 356059, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478591

RESUMO

A nontoxigenic Aspergillus flavus strain, K49, is currently being tested as a biological control agent in corn fields in the Mississippi Delta. However, little is known about the overall genetic diversity of A. flavus from year to year in corn fields and specifically in Mississippi. Our objective was to assess the genetic variability of A. flavus isolates from different seasons, inoculum sources, and years, from a no-till corn field. Of the 175 A. flavus isolates examined, 74 and 97 had the typical norB-cypA type I (1.5 kb) and type II (1.0 kb) deletion patterns, respectively. Variability in the sequence of the omtA gene of the majority of the field isolates (n = 118) was compared to strain K49. High levels of haplotypic diversity (24 omtA haplotypes; Hd = 0.61 ± 0.04) were found. Among the 24 haplotypes, two were predominant, H1 (n = 71), which consists of mostly toxigenic isolates, and H49 (n = 18), which consists of mostly atoxigenic isolates including K49. Toxigenic isolates were prevalent (60%) in this natural population. Nonetheless, about 15% of the population likely shared the same ancestral origin with K49. This study provides valuable information on the diversity of A. flavus. This knowledge can be further used to develop additional biological control strains.


Assuntos
Aspergillus flavus/genética , Variação Genética , Controle Biológico de Vetores , Haplótipos , Mississippi , Zea mays/genética , Zea mays/microbiologia
11.
J Fungi (Basel) ; 10(10)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39452671

RESUMO

Fungal HacA/Hac1 transcription factors play a crucial role in regulating the unfolded protein response (UPR). The UPR helps cells to maintain endoplasmic reticulum (ER) protein homeostasis, which is critical for growth, development, and virulence. The Aspergillus flavus hacA gene encodes a domain rich in basic and acidic amino acids (Bsc) and a basic leucine zipper (bZip) domain, and features a non-conventional intron (Nt20). In this study, CRISPR/Cas9 was utilized to dissect the Bsc-coding, bZip-coding, and Nt20 sequences to elucidate the relationship between genotype and phenotype. In the Bsc and bZip experimental sets, all observed mutations in both coding sequences were in frame, suggesting that out-of-frame mutations are lethal. The survival rate of transformants in the Nt20 experiment set was low, at approximately 7%. Mutations in the intron primarily consisted of out-of-frame insertions and deletions. In addition to the wild-type-like conidial morphology, the mutants exhibited varied colony morphologies, including sclerotial, mixed (conidial and sclerotial), and mycelial morphologies. An ER stress test using dithiothreitol revealed that the sclerotial and mycelial mutants were much more sensitive than the conidial mutants. Additionally, the mycelial mutants were unable to produce aflatoxin but still produced aspergillic acid and kojic acid. RNAi experiments targeting the region encompassing Bsc and bZip indicated that transformant survival rates generally decreased, with a small number of transformants displaying phenotypic changes. Defects in the hacA gene at the DNA and transcript levels affected the survival, growth, and development of A. flavus. Thus, this gene may serve as a promising target for future host-induced gene-silencing strategies aimed at controlling infection and reducing aflatoxin contamination in crops.

12.
Fungal Genet Biol ; 58-59: 71-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23994319

RESUMO

The proteins VeA, VelB and LaeA of Aspergillus nidulans form a heterotrimeric complex (the velvet complex) in the dark to coordinate sexual development and production of some secondary metabolites. VeA and VelB of A. nidulans and Aspergillus fumigatus also are repressors of conidiation, but VeA of Aspergillus flavus in studied strains acts positively on conidiation. In the present study, we show via yeast-two hybrid assays that interactions among A. flavus VeA, VelB, and LaeA are conserved as in the A. nidulans velvet complex. We found that FluG, which is required for conidiophore formation in A. nidulans but whose deletion in A. flavus delays onset of conidiation, was probably an interacting partner of VelB. Deletion of velB in A. flavus CA14 severely impaired conidiation in the dark although to a lesser extent than deletion of veA. In both mutants fluG deletion resulted in further decreased conidiation even in the light. Deletion of fluG in the ΔlaeA strain, however, did not affect conidiation. All mutant types were unable to produce aflatoxin and sclerotia. Cross-complementation of the ΔvelB strain with gpdA::veA restored conidiation but not aflatoxin production although aflR, the aflatoxin pathway regulatory gene, was expressed at a normal level. Cross-complementation of the ΔveA strain with gpdA::velB failed to restore conidiation and aflatoxin production. The ΔvelB strain complemented with or a wild type transformed by gpdA::velB had elevated sclerotial production as the ΔfluG strain. Concerted interactions of A. flavus VeA and VelB with LaeA are critical for conidiation and aflatoxin biosynthesis. VelB may have a dual role and likely coordinates with FluG to modulate sclerotial production.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Aflatoxinas/biossíntese , Sequência de Aminoácidos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
13.
Appl Microbiol Biotechnol ; 97(10): 4289-300, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563886

RESUMO

Proteins with a Zn(II)2Cys6 domain, Cys-X2-Cys-X6-Cys-X5₋12-Cys-X2-Cys-X6₋9-Cys (hereafter, referred to as the C6 domain), form a subclass of zinc finger proteins found exclusively in fungi and yeast. Genome sequence databases of Saccharomyces cerevisiae and Candida albicans have provided an overview of this family of genes. Annotation of this gene family in most fungal genomes is still far from perfect and refined bioinformatic algorithms are urgently needed. Aspergillus flavus is a saprophytic soil fungus that can produce the carcinogenic aflatoxin. It is the second leading causative agent of invasive aspergillosis. The 37-Mb genome of A. flavus is predicted to encode 12,000 proteins. Two and a half percent of the total proteins are estimated to contain the C6 domain, more than twofold greater than those estimated for yeast, which is about 1 %. The variability in the spacing between cysteines, C3-C4 and C5-C6, in the zinc cluster enables classification of the domains into distinct subgroups, which are also well conserved in Aspergillus nidulans. Sixty-six percent (202/306) of the A. flavus C6 proteins contain a specific transcription factor domain, and 7 % contain a domain of unknown function, DUF3468. Two A. nidulans C6 proteins containing the DUF3468 are involved in asexual conidiation and another two in sexual differentiation. In the anamorphic A. flavus, a homolog of the latter lacks the C6 domain. A. flavus being heterothallic and reproducing mainly through conidiation appears to have lost some components involved in homothallic sexual development. Of the 55 predicted gene clusters thought to be involved in production of secondary metabolites, only about half have a C6-encoding gene in or near the gene clusters. The features revealed by the A. flavus C6 proteins likely are common for other ascomycete fungi.


Assuntos
Aspergillus flavus/genética , Cisteína/química , Genoma Fúngico , Família Multigênica , Zinco/química , Sequência de Aminoácidos , Aspergillus flavus/metabolismo , Cisteína/genética , Bases de Dados Genéticas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Homologia de Sequência de Aminoácidos
14.
Microbiol Spectr ; 11(1): e0464822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651760

RESUMO

For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.


Assuntos
Aspergillus fumigatus , Aspergillus nidulans , Aspergillus niger , Sistemas CRISPR-Cas
15.
Mycobiology ; 51(3): 139-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359951

RESUMO

Aspergillus sojae has long been considered a domesticated strain of Aspergillus parasiticus. This study delineated relationships among the two species and an Aspergillus PWE36 isolate. Of 25 examined clustered aflatoxin genes of PWE36, 20 gene sequences were identical to those of A. sojae, but all had variations to those of A. parasiticus. Additionally, PWE36 developmental genes of conidiation and sclerotial formation, overall, shared higher degrees of nucleotide sequence identity with A. sojae genes than with A. parasiticus genes. Examination of defective cyclopiazonic acid gene clusters revealed that the PWE36 deletion pattern was identical only to those of A. sojae. Using A. sojae SMF134 genome sequence as a reference, visualization of locally collinear blocks indicated that PWE36 shared higher genome sequence homologies with A. sojae than with A. parasiticus. Phylogenetic inference based on genome-wide single nucleotide polymorphisms (SNPs) and total SNP counts showed that A. sojae strains formed a monophyletic clade and were clonal. Two (Argentinian and Ugandan) A. parasiticus isolates but not including an Ethiopian isolate formed a monophyletic clade, which showed that A. parasiticus population is genetically diverse and distant to A. sojae. PWE36 and A. sojae shared a most recent common ancestor (MRCA). The estimated divergence time for PWE36 and A. sojae was about 0.4 mya. Unlike Aspergillus oryzae, another koji mold that includes genetically diverse populations, the findings that current A. sojae strains formed a monophyletic group and shared the MRCA with PWE36 allow A. sojae to be continuously treated as a species for food safety reasons.

16.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836373

RESUMO

Kojic acid (KA) is a fungal metabolite and has a variety of applications in the cosmetics and food industries. Aspergillus oryzae is a well-known producer of KA, and its KA biosynthesis gene cluster has been identified. In this study, we showed that nearly all section Flavi aspergilli except for A. avenaceus had complete KA gene clusters, and only one Penicillium species, P. nordicum, contained a partial KA gene cluster. Phylogenetic inference based on KA gene cluster sequences consistently grouped section Flavi aspergilli into clades as prior studies. The Zn(II)2Cys6 zinc cluster regulator KojR transcriptionally activated clustered genes of kojA and kojT in Aspergillus flavus. This was evidenced by the time-course expression of both genes in kojR-overexpressing strains whose kojR expression was driven by a heterologous Aspergillus nidulans gpdA promoter or a homologous A. flavus gpiA promoter. Using sequences from the kojA and kojT promoter regions of section Flavi aspergilli for motif analyses, we identified a consensus KojR-binding motif to be an 11-bp palindromic sequence of 5'-CGRCTWAGYCG-3' (R = A/G, W = A/T, Y = C/T). A CRISPR/Cas9-mediated gene-targeting technique showed that the motif sequence, 5'-CGACTTTGCCG-3', in the kojA promoter was critical for KA biosynthesis in A. flavus. Our findings may facilitate strain improvement and benefit future kojic acid production.

17.
J Fungi (Basel) ; 9(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675939

RESUMO

Aspergillus flavus is an opportunistic pathogen responsible for millions of dollars in crop losses annually and negative health impacts on crop consumers globally. A. flavus strains have the potential to produce aflatoxin and other toxic secondary metabolites, which often increase during plant colonization. To mitigate the impacts of this international issue, we employ a range of strategies to directly impact fungal physiology, growth and development, thus requiring knowledge on the underlying molecular mechanisms driving these processes. Here we utilize RNA-sequencing data that are obtained from in situ assays, whereby Zea mays kernels are inoculated with A. flavus strains, to select transcription factors putatively driving virulence-related gene networks. We demonstrate, through growth, sporulation, oxidative stress-response and aflatoxin/CPA analysis, that three A. flavus strains with knockout mutations for the putative transcription factors AFLA_089270, AFLA_112760, and AFLA_031450 demonstrate characteristics such as reduced growth capacity and decreased aflatoxin/CPA accumulation in kernels consistent with decreased fungal pathogenicity. Furthermore, AFLA_089270, also known as HacA, eliminates CPA production and impacts the fungus's capacity to respond to highly oxidative conditions, indicating an impact on plant colonization. Taken together, these data provide a sound foundation for elucidating the downstream molecular pathways potentially contributing to fungal virulence.

18.
Appl Environ Microbiol ; 78(21): 7557-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22904054

RESUMO

The fluG gene is a member of a family of genes required for conidiation and sterigmatocystin production in Aspergillus nidulans. We examined the role of the Aspergillus flavus fluG orthologue in asexual development and aflatoxin biosynthesis. Deletion of fluG in A. flavus yielded strains with an approximately 3-fold reduction in conidiation but a 30-fold increase in sclerotial formation when grown on potato dextrose agar in the dark. The concurrent developmental changes suggest that A. flavus FluG exerts opposite effects on a mutual signaling pathway for both processes. The altered conidial development was in part attributable to delayed expression of brlA, a gene controlling conidiophore formation. Unlike the loss of sterigmatocystin production by A. nidulans fluG deletion strains, aflatoxin biosynthesis was not affected by the fluG deletion in A. flavus. In A. nidulans, FluG was recently found to be involved in the formation of dehydroaustinol, a component of a diffusible signal of conidiation. Coculturing experiments did not show a similar diffusible meroterpenoid secondary metabolite produced by A. flavus. These results suggest that the function of fluG and the signaling pathways related to conidiation are different in the two related aspergilli.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Aspergillus flavus/fisiologia , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Aspergillus flavus/metabolismo , Aspergillus nidulans/metabolismo , Aspergillus nidulans/fisiologia , Proteínas Fúngicas/biossíntese , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Esterigmatocistina/biossíntese , Terpenos/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
19.
Int J Mol Sci ; 13(11): 13867-80, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23203038

RESUMO

Natural compounds that pose no significant medical or environmental side effects are potential sources of antifungal agents, either in their nascent form or as structural backbones for more effective derivatives. Kojic acid (KA) is one such compound. It is a natural by-product of fungal fermentation commonly employed by food and cosmetic industries. We show that KA greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations of commercial medicinal and agricultural antifungal agents, amphotericin B (AMB) and strobilurin, respectively, against pathogenic yeasts and filamentous fungi. Assays using two mitogen-activated protein kinase (MAPK) mutants, i.e., sakA∆, mpkC∆, of Aspergillus fumigatus, an agent for human invasive aspergillosis, with hydrogen peroxide (H(2)O(2)) or AMB indicate such chemosensitizing activity of KA is most conceivably through disruption of fungal antioxidation systems. KA could be developed as a chemosensitizer to enhance efficacy of certain conventional antifungal drugs or fungicides.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Pironas/farmacologia , Antifúngicos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Sinergismo Farmacológico , Humanos , Peróxido de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Pironas/química , Leveduras/efeitos dos fármacos
20.
Int J Food Microbiol ; 366: 109559, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35144216

RESUMO

Aspergillus flavus communities in agricultural fields consist of isolates with varying abilities to produce aflatoxins, which are highly toxic and carcinogenic to humans and animals. Biological control using multiple non-aflatoxigenic strains as a formulation to outcompete aflatoxigenic A. flavus has become a mainstream strategy. Aflasafe™ is a biocontrol product composed of four strains, Ka16127, La3279, La3304 and Og0222. It was first developed in Nigeria and is now widely used on maize and groundnut. In this study, phylogenetic analyses based on genome-wide single nucleotide polymorphisms showed that Ka16127 and La3304 were more closely related to each other than both were to La3279, and the three were distantly related to Og0222. Detailed molecular characterization of La3279 indicated that its genome, contradictory to the published report, lacked approximately half of the aflatoxin gene cluster as well as the entire cyclopiazonic acid gene cluster. La3279 was a member of the previously known "pattern E" group, which includes A. flavus and Aspergillus oryzae isolates that have the aforementioned deletion followed by a 3.8-kb "E block" sequence insertion. In comparison to the E block, corresponding regions in typical aflatoxigenic S-morphotype/genotype isolates as well as Ka16127 and La3304 were found to lack 1.1 kb of the 5' portion whereas L-morphotype/genotype isolates contained a complete nonhomologous region characterized by 2.5 copies of A. flavus telomeric repeat sequence at one end. Regions corresponding to the E block were highly variable and were useful for classifying A. flavus isolates into groups that mostly contained both mating types. The presence of both mating-type genes in genetically closely related A. flavus suggests a previously active sexual cycle. It could facilitate the development of a refined biocontrol strategy such as deploying biocontrol strains with the same mating-type that is predominant in a field A. flavus population.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/genética , Aspergillus flavus/genética , Agentes de Controle Biológico , Genômica , Família Multigênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA