Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 66(10): 1853-1861, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27436270

RESUMO

OBJECTIVE: Silibinin is a flavonolignan that is well established for its robust antiviral activity against HCV infection and has undergone several clinical trials for the management of hepatitis C. Despite its potency, silibinin suffers from poor solubility and bioavailability, restricting its clinical use. To overcome this limitation, we developed highly bioavailable silibinin nanoparticles (SB-NPs) and evaluated their efficiency against HCV infection. DESIGN: SB-NPs were prepared using a nanoemulsification technique and were physicochemically characterised. Infectious HCV culture systems were used to evaluate the influence of SB-NP on the virus life cycle and examine their antioxidant activity against HCV-induced oxidative stress. The safety profiles of SB-NP, in vivo pharmacokinetic studies and antiviral activity against infection of primary human hepatocytes were also assessed. RESULTS: SB-NP consisted of nanoscale spherical particles (<200 nm) encapsulating amorphous silibinin at >97% efficiency and increasing the compound's solubility by >75%. Treatment with SB-NP efficiently restricted HCV cell-to-cell transmission, suggesting that they retained silibinin's robust anti-HCV activity. In addition, SB-NP exerted an antioxidant effect via their free radical scavenging function. Oral administration of SB-NP in rodents produced no apparent in vivo toxicity, and pharmacokinetic studies revealed an enhanced serum level and superior biodistribution to the liver compared with non-modified silibinin. Finally, SB-NP efficiently reduced HCV infection of primary human hepatocytes. CONCLUSIONS: Due to SB-NP's enhanced bioavailability, effective anti-HCV activity and an overall hepatoprotective effect, we suggest that SB-NP may be a cost-effective anti-HCV agent that merits further evaluation for the treatment of hepatitis C.


Assuntos
Antioxidantes/farmacologia , Hepacivirus/efeitos dos fármacos , Silimarina/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Células Cultivadas , Sistemas de Liberação de Medicamentos , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Nanosferas , Ratos , Silibina , Silimarina/administração & dosagem , Silimarina/farmacocinética
2.
J Hepatol ; 62(3): 541-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25450204

RESUMO

BACKGROUND & AIMS: A vaccine against hepatitis C virus (HCV) is unavailable and cost-effective antivirals that prevent HCV infection and re-infection, such as in the transplant setting, do not exist. In a search for novel and economical prophylactic agents, we examined the antiviral activity of saikosaponins (SSa, SSb2, SSc, and SSd) from Bupleurum kaoi root (BK) as entry inhibitors against HCV infection. METHODS: Infectious HCV culture systems were used to examine the effect of saikosaponins on the complete virus life cycle (entry, RNA replication/translation, and particle production). Antiviral activity against various HCV genotypes, clinical isolates, and infection of primary human hepatocytes were also evaluated. RESULTS: BK and the saikosaponins potently inhibited HCV infection at non-cytotoxic concentrations. These natural agents targeted early steps of the viral life cycle, while leaving replication/translation, egress, and spread relatively unaffected. In particular, we identified SSb2 as an efficient inhibitor of early HCV entry, including neutralization of virus particles, preventing viral attachment, and inhibiting viral entry/fusion. Binding analysis, using soluble viral glycoproteins, demonstrated that SSb2 acted on HCV E2. Moreover, SSb2 inhibited infection by several genotypic strains and prevented binding of serum-derived HCV onto hepatoma cells. Finally, treatment with the compound blocked HCV infection of primary human hepatocytes. CONCLUSIONS: Due to its potency, SSb2 may be of value for development as an antagonist of HCV entry and could be explored as prophylactic treatment during the course of liver transplantation.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Antivirais/toxicidade , Bupleurum , Linhagem Celular , Hepatite C/prevenção & controle , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Transplante de Fígado , Masculino , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Ácido Oleanólico/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Saponinas/toxicidade , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Antiviral Res ; 130: 58-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012176

RESUMO

Without a vaccine, hepatitis C virus (HCV) remains a global medical and socio-economic burden, predisposing about 170 million carriers worldwide to end-stage liver diseases including cirrhosis and hepatocellular carcinoma. Although the recently developed direct-acting antivirals (DAAs) have revolutionized hepatitis C treatment, most of them are unsuitable for monotherapy due to risks of resistance, thus necessitating combination with interferon (IFN)-alpha, ribavirin, or additional DAAs. More importantly, the high cost associated with the DAAs restricts their accessibility to most parts of the world. Developing novel cost-effective anti-HCV therapeutics may help expand the scope of antivirals and treatment strategies against hepatitis C. Herein, we applied an activity-based and fraction-guided analysis of extracts from the medicinal plant Phyllanthus urinaria (P. urinaria), which yielded fraction 13 (F13) as possessing the most potent inhibitory activity against early viral entry of cell-culture HCV infection. Chemical analysis (silica gel chromatography followed by ESI LC-MS plus (1)H and (13)C NMR) of F13 identified loliolide (LOD), a monoterpenoid lactone, as a novel inhibitor of HCV entry. Specifically, LOD could efficiently inactivate HCV free virus particles, abrogate viral attachment, and impede viral entry/fusion, with minimal effect on viral replication/translation, particle production, and induction of type I IFN host antiviral immune response. ELISA-based binding analysis confirmed the monoterpenoid's ability in efficiently blocking HCV particle attachment to the host cell surface. Furthermore, LOD could inhibit infection by several genotypic strains of HCV. This is the first report characterizing P. urinaria and its bioactive compound LOD as potent HCV entry inhibitors, which merit further evaluation for development as candidate antiviral agents against hepatitis C.


Assuntos
Antivirais/farmacologia , Benzofuranos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular , Células Cultivadas , Fracionamento Químico , Relação Dose-Resposta a Droga , Genótipo , Humanos , Concentração Inibidora 50 , Extratos Vegetais/química , Montagem de Vírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
4.
PLoS One ; 10(2): e0117800, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658612

RESUMO

Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products.


Assuntos
Transfusão de Sangue , Detergentes/farmacologia , Hepacivirus/efeitos dos fármacos , Octoxinol/farmacologia , Plasma/virologia , Inativação de Vírus/efeitos dos fármacos , Humanos
5.
Antiviral Res ; 118: 139-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25865056

RESUMO

A preventive vaccine against hepatitis C virus (HCV) infection remains unavailable and newly developed drugs against viral replication are complicated by potential drug-resistance and high cost. These issues justify the need to develop alternative antiviral agents and expand the scope of strategies for the treatment of hepatitis C, such as targeting viral entry. In this study, we explore the bioactivity of Limonium sinense (L. sinense) and its purified constituents against HCV life cycle using subgenomic replicon and infectious HCV culture systems. Data indicated that the water extract from the underground part of L. sinense (LS-UW) exhibited potent inhibitory activity against HCV at non-cytotoxic concentrations. LS-UW targeted early HCV infection without affecting viral replication, translation, and cell-to-cell transmission, and blocked viral attachment and post-attachment entry/fusion steps. Bioactivity analysis of major constituents from LS-UW through viral infectivity/entry assays revealed that gallic acid (GA) also inhibits HCV entry. Furthermore, both LS-UW and GA could suppress HCV infection of primary human hepatocytes. Due to their potency and ability to target HCV early viral entry, LS-UW and GA may be of value for further development as prospective antivirals against HCV.


Assuntos
Antivirais/farmacologia , Ácido Gálico/farmacologia , Hepacivirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Células Cultivadas , Ácido Gálico/isolamento & purificação , Hepacivirus/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Extratos Vegetais/isolamento & purificação
6.
Anticancer Agents Med Chem ; 13(10): 1565-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23438824

RESUMO

Cinnamaldehyde (CIN) has been shown to exert chemopreventive activity against several types of human cancer cells. We previously reported that CIN induced apoptosis of human hepatoma PLC/PRF/5 cells and this effect was associated with activation of the pro-apoptotic Bcl-2 family of proteins and the MAPK cascade. To further clarify the underlying mechanism of CIN-induced apoptosis, we examined in this study its relationship with the mitochondrial death pathway using the mitochondrial permeability transition (MPT) inhibitor, cyclosporin A (CsA), and the general caspase inhibitor, z-VAD-fmk. Results indicated that CIN-induced apoptosis involved enhanced ROS generation, disruption of mitochondrial potential, and the mitochondrial release of cytochrome c and Smac/DIABLO into the cytosol, which in turn promoted caspase-3 to its active form and the subsequent cleavage of PARP. Treatment with CIN also downregulated protein levels of the anti-apoptotic factors XIAP and Bcl-2 with concomitant accumulation of the pro-apoptotic Bax in a timedependent manner. These mitochondria-related apoptotic effects induced by CIN were however blocked by CsA and z-VAD-fmk pretreatments, which prevented cells from undergoing programmed cell death triggered by CIN. Furthermore, the increase of Bax and decrease of Bcl-2 and XIAP protein expression due to CIN treatment were also reversely modulated by the two inhibitors. Taken together, these results suggested that CIN is an apoptotic inducer that acts on the mitochondrial death pathway in PLC/PRF/5 cells and its effect could be blocked by CsA and z-VAD-fmk.


Assuntos
Acroleína/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Acroleína/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Citocromos c/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
Food Chem Toxicol ; 47(6): 1132-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19425186

RESUMO

Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Physalis/química , Antineoplásicos Fitogênicos/isolamento & purificação , Western Blotting , Dióxido de Carbono , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia com Fluido Supercrítico , Fragmentação do DNA/efeitos dos fármacos , Flavonoides/química , Flavonoides/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Neoplasias Pulmonares/patologia , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA