Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EMBO Rep ; 24(3): e55286, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36652307

RESUMO

An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Interferons/metabolismo , Proteínas de Membrana Transportadoras/genética , Imunidade Inata , Genoma Viral , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 486, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412657

RESUMO

Our previous study has found that monoclonal antibodies targeting a conserved epitope peptide spanning from residues 1144 to 1156 of SARS-CoV-2 spike (S) protein, namely S(1144-1156), can broadly neutralize all of the prevalent SARS-CoV-2 strains, including the wild type, Alpha, Epsilon, Delta, and Gamma variants. In the study, S(1144-1156) was conjugated with bovine serum albumin (BSA) and formulated with Montanide ISA 51 adjuvant for inoculation in BALB/c mice to study its potential as a vaccine candidate. Results showed that the titers of S protein-specific IgGs and the neutralizing antibodies in mouse sera against various SARS-CoV-2 variants, including the Omicron sublineages, were largely induced along with three doses of immunization. The significant release of IFN-γ and IL-2 was also observed by ELISpot assays through stimulating vaccinated mouse splenocytes with the S(1144-1156) peptide. Furthermore, the vaccination of the S(1143-1157)- and S(1142-1158)-EGFP fusion proteins can elicit more SARS-CoV-2 neutralizing antibodies in mouse sera than the S(1144-1156)-EGFP fusion protein. Interestingly, the antisera collected from mice inoculated with the S(1144-1156) peptide vaccine exhibited better efficacy for neutralizing Omicron BA.2.86 and JN.1 subvariants than Omicron BA.1, BA.2, and XBB subvariants. Since the amino acid sequences of the S(1144-1156) are highly conserved among various SARS-CoV-2 variants, the immunogen containing the S(1144-1156) core epitope can be designed as a broadly effective COVID-19 vaccine. KEY POINTS: • Inoculation of mice with the S(1144-1156) peptide vaccine can induce bnAbs against various SARS-CoV-2 variants. • The S(1144-1156) peptide stimulated significant release of IFN-γ and IL-2 in vaccinated mouse splenocytes. • The S(1143-1157) and S(1142-1158) peptide vaccines can elicit more SARS-CoV-2 nAbs in mice.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Epitopos/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Humanos , Peptídeos/imunologia , Peptídeos/genética , Peptídeos/química , Interferon gama/metabolismo
3.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
4.
J Nat Prod ; 86(6): 1428-1436, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37267066

RESUMO

Traditional herbal medicine offers opportunities to discover novel therapeutics against SARS-CoV-2 mutation. The dried aerial part of mint (Mentha canadensis L.) was chosen for bioactivity-guided extraction. Seven constituents were isolated and characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Syringic acid and methyl rosmarinate were evaluated in drug combination treatment. Ten amide derivatives of methyl rosmarinate were synthesized, and the dodecyl (13) and 3-ethylphenyl (19) derivatives demonstrated significant improvement in the anti-SARS-CoV-2 plaque reduction assay, achieving IC50 of 0.77 and 2.70 µM, respectively, against Omicron BA.1 as compared to methyl rosmarinate's IC50 of 57.0 µM. Spike protein binding and 3CLpro inhibition assays were performed to explore the viral inhibition mechanism. Molecular docking of compounds 13 and 19 to 3CLpro was performed to reveal potential interaction. In summary, natural products with anti-Omicron BA.1 activity were isolated from Mentha canadensis and derivatives of methyl rosmarinate were synthesized, showing 21- to 74-fold improvement in antiviral activity against Omicron BA.1.


Assuntos
Produtos Biológicos , COVID-19 , Mentha , Antivirais/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Anti-Inflamatórios não Esteroides , Antioxidantes , Produtos Biológicos/farmacologia , Cinamatos , Depsídeos
5.
Appl Microbiol Biotechnol ; 107(9): 2983-2995, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988669

RESUMO

Vaccination is considered to be the most effective countermeasure to prevent and combat the global health threats of COVID-19. People with obesity are at a greater risk of hospitalization, life-threatening illness, and adverse outcomes after having COVID-19. Therefore, a safe and effective COVID-19 vaccine for obese individuals is urgently needed. In the study, the vaccine composed of the ISA 51 adjuvant and the SARS-CoV-2 spike (S) receptor-binding domain (RBD) in conjugation with the human IgG1 Fc fragment (named as ISA 51-adjuvanted RBD-Fc vaccine) was developed and inoculated in the regular chow diet (RCD) lean mice and the high-fat diet (HFD)-induced obese mice. The S protein-specific IgG titers were largely induced in an increasing manner along with three doses of ISA 51-adjuvanted RBD-Fc vaccine without causing any harmful side effect. In the HFD mice, the S protein-specific IgG titers can be quickly observed 2 weeks post the first inoculation. The antisera elicited by the ISA 51-adjuvanted RBD-Fc vaccine in the RCD and HFD mice exhibited potent SARS-CoV-2 neutralizing activities in the plaque reduction neutralization test (PRNT) assays and showed similar specificity for recognizing the key residues in the RBD which were involved in interacting with angiotensin-converting enzyme 2 (ACE2) receptor. The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine in the HFD mice can be sustainably maintained with the PRNT50 values of 1.80-1.91×10-3 for at least 8 weeks post the third inoculation. Collectively, the RBD-Fc-based immunogen and the ISA 51-adjuvanted formulation can be developed as an effective COVID-19 vaccine for obese individuals. KEY POINTS: • The ISA 51-adjuvanted RBD-Fc vaccine can induce potent SARS-CoV-2 neutralizing antibodies in the obese mouse • The antibodies elicited by the ISA 51-adjuvanted RBD-Fc vaccine can bind to the key RBD residues involved in interacting with ACE2 • The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine can be sustainably maintained for at least 8 weeks post the third inoculation.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , Camundongos Obesos , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
6.
J Formos Med Assoc ; 122(2): 121-131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36127206

RESUMO

BACKGROUND/PURPOSE: The efficacy and safety of coronavirus disease 2019 (COVID-19) booster vaccines remain limited. We investigated the immunogenicity and adverse events of the third dose of mRNA vaccines in healthy adults. METHODS: Volunteers vaccinated with two doses of the adenoviral vaccine (ChAdOx1) 12 weeks before were administered with an mRNA COVID-19 vaccine. These were divided into three groups, full-dose mRNA-1273 (group 1); half-dose mRNA-1273 (group 2); and full-dose BNT-162b2 (group 3). Primary outcomes included serum anti-SARS-CoV-2 spike immunoglobulin G (IgG) titers and neutralizing antibody titers against B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron) variants. Secondary outcomes included the evaluation of humoral and cellular immunity and vaccine-associated adverse events after the boost. RESULTS: Totally 300 participants were recruited, and 298 participants were enrolled. For all three groups, an increase in anti-SARS-CoV-2 spike IgG geometric mean titers (30.12- to 71.80-fold) and neutralizing antibody titers against the alpha variant (69.80- to 173.23-folds), delta variant (132.69- to 324.63-folds), and omicron variant (135.36- to 222.37-folds) were observed on day 28. All groups showed robust T- and B-cell responses after boosting. Adverse events were overall mild and transient but with higher prevalence and severity in group 1 participants than in other groups. CONCLUSION: Third dose mRNA COVID-19 vaccines markedly enhanced cellular and humoral responses and were safe. Immunological responses and adverse events were higher in individuals receiving the full-dose mRNA-1273 vaccine, followed by a half-dose mRNA-1273 vaccine and BNT-162b2 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas Virais , Adulto , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2
7.
J Formos Med Assoc ; 122(8): 714-722, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36496300

RESUMO

BACKGROUND: Patients recovering from COVID-19 may need vaccination against SARS-CoV-2 because acquired immunity from primary infection may wane, given the emergence of new SARS-CoV-2 variants. Understanding the trends of anti-spike IgG and neutralizing antibody titers in patients recovering from COVID-19 may inform the decision made on the appropriate interval between recovery and vaccination. METHODS: Participants aged 20 years or older and diagnosed with COVID-19 between January and December, 2020 were enrolled. Serum specimens were collected every three months from 10 days to 12 months after the onset of symptom for determinations of anti-spike IgG and neutralizing antibody titers against SARS-CoV-2 Wuhan strain with D614G mutation, alpha, gamma and delta variants. RESULTS: Of 19 participants, we found a decreasing trend of geometric mean titers of anti-spike IgG from 560.9 to 217 and 92 BAU/mL after a 4-month and a 7-month follow-up, respectively. The anti-spike IgG titers declined more quickly in the ten participants with severe or critical disease than the nine participants with only mild to moderate disease between one month and seven months after SARS-CoV-2 infection (-8.49 vs - 2.34-fold, p < 0.001). The neutralizing activity of the convalescent serum specimens collected from participants recovering from wild-type SARS-CoV-2 infection against different variants was lower, especially against the delta variants (p < 0.01 for each variant with Wuhan strain as reference). CONCLUSION: Acquired immunity from primary infection with SARS-CoV-2 waned within 4-7 months in COVID-19 patients, and neutralizing cross-activities against different SARS-CoV-2 variants were lower compared with those against wild-type strain.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Soroterapia para COVID-19 , Imunoglobulina G , Anticorpos Antivirais
8.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069363

RESUMO

The continuous emergence of SARS-CoV-2 variants has led to a protracted global COVID-19 pandemic with significant impacts on public health and global economy. While there are currently available SARS-CoV-2 vaccines and therapeutics, most of the FDA-approved antiviral agents directly target viral proteins. However, inflammation is the initial immune pathogenesis induced by SARS-CoV-2 infection, there is still a need to find additional agents that can control the virus in the early stages of infection to alleviate disease progression for the next pandemic. Here, we find that both the spike protein and its receptor CD147 are crucial for inducing inflammation by SARS-CoV-2 in THP-1 monocytic cells. Moreover, we find that 3-epi-betulin, isolated from Daphniphyllum glaucescens, reduces the level of proinflammatory cytokines induced by SARS-CoV-2, consequently resulting in a decreased viral RNA accumulation and plaque formation. In addition, 3-epi-betulin displays a broad-spectrum inhibition of entry of SARS-CoV-2 pseudoviruses, including Alpha (B.1.1.7), Eplison (B.1.429), Gamma (P1), Delta (B.1.617.2) and Omicron (BA.1). Moreover, 3-epi-betulin potently inhibits SARS-CoV-2 infection with an EC50 of <20 µM in Calu-3 lung epithelial cells. Bioinformatic analysis reveals the chemical interaction between the 3-epi-betulin and the spike protein, along with the critical amino acid residues in the spike protein that contribute to the inhibitory activity of 3-epi-betulin against virus entry. Taken together, our results suggest that 3-epi-betulin exhibits dual effect: it reduces SARS-CoV-2-induced inflammation and inhibits virus entry, positioning it as a potential antiviral agent against SARS-CoV-2.


Assuntos
COVID-19 , Daphniphyllum , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Antivirais/farmacologia , Inflamação/tratamento farmacológico
9.
Appl Microbiol Biotechnol ; 106(24): 8183-8194, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36404356

RESUMO

The nucleic acid test is still the standard assessment for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by human infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to supporting the confirmation of disease cases, serological assays are used for the analysis of antibody status and epidemiological surveys. In this study, a single Western blot strip (WBS) coated with multiple Escherichia coli (E. coli)-expressed SARS-CoV-2 antigens was developed for comprehensive studies of antibody profiles in COVID-19 patient sera. The levels of specific antibodies directed to SARS-CoV-2 spike (S), S2, and nucleocapsid (N) proteins were gradually increased with the same tendency as the disease progressed after hospitalization. The signal readouts of S, S2, and N revealed by the multi-antigen-coated WBS (mWBS)-based serological assay (mWBS assay) also demonstrated a positive correlation with the SARS-CoV-2 neutralizing potency of the sera measured by the plaque reduction neutralization test (PRNT) assays. Surprisingly, the detection signals against the unstructured receptor-binding domain (RBD) purified from E. coli inclusion bodies were not observed, although the COVID-19 patient sera exhibited strong neutralizing potency in the PRNT assays, suggesting that the RBD-specific antibodies in patient sera mostly recognize the conformational epitopes. Furthermore, the mWBS assay identified a unique and major antigenic epitope at the residues 1148, 1149, 1152, 1155, and 1156 located within the 1127-1167 fragment of the S2 subunit, which was specifically recognized by the COVID-19 patient serum. The mWBS assay can be finished within 14-16 min by using the automatic platform of Western blotting by thin-film direct coating with suction (TDCS WB). Collectively, the mWBS assay can be applied for the analysis of antibody responses, prediction of the protective antibody status, and identification of the specific epitope. KEY POINTS: • A Western blot strip (WBS) coated with multiple SARS-CoV-2 antigens was developed for the serological assay. • The multi-antigen-coated WBS (mWBS) can be utilized for the simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens. • The mWBS-based serological assay (mWBS assay) identified a unique epitope recognized by the COVID-19 patient serum.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Formação de Anticorpos , COVID-19/diagnóstico , Escherichia coli/genética , Western Blotting
10.
J Formos Med Assoc ; 121(4): 766-777, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305895

RESUMO

BACKGROUND/PURPOSE: Efficacy and safety data of heterologous prime-boost vaccination against SARS-CoV-2 remains limited. METHODS: We recruited adult volunteers for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines. Four groups of prime-boost vaccination schedules were designed: Group 1, ChAdOx1/ChAdOx1 8 weeks apart; Group 2, ChAdOx1/mRNA-1273 8 weeks apart; Group 3, ChAdOx1/mRNA-1273 4 weeks apart; and Group 4, mRNA-1273/mRNA-1273 4 weeks apart. The primary outcome was serum anti-SARS-CoV-2 IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on day 28 after the second dose. Adverse events were recorded up until 84 days after the second dose. RESULTS: We enrolled 399 participants with a median age of 41 years and 75% were female. On day 28 after the second dose, the anti-SARS-CoV-2 IgG titers of both heterologous vaccinations (Group 2 and Group 3) were significantly higher than that of homologous ChAdOx1 vaccination (Group 1), and comparable with homologous mRNA-1273 vaccination (Group 4). The heterologous vaccination group had better neutralizing antibody responses against the alpha and delta variant as compared to the homologous ChAdOx1 group. Most of the adverse events (AEs) were mild and transient. AEs were less frequent when heterologous boosting was done at 8 weeks rather than at 4 weeks. CONCLUSION: Heterologous ChAdOx1/mRNA-1273 vaccination provided higher immunogenicity than homologous ChAdOx1 vaccination and comparable immunogenicity with the homologous mRNA-1273 vaccination. Our results support the safety and efficacy of heterologous prime-boost vaccination using the ChAdOx1 and mRNA-1273 COVID-19 vaccines. (ClinicalTrials.gov number, NCT05074368).


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Feminino , Humanos , Imunidade , Vacinação
11.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409412

RESUMO

Entry inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to control the outbreak of coronavirus disease 2019 (COVID-19). This study developed a robust and straightforward assay that detected the molecular interaction between the receptor-binding domain (RBD) of viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor in just 10 min. A drug library of 1068 approved compounds was used to screen for SARS-CoV2 entry inhibition, and 9 active drugs were identified as specific pseudovirus entry inhibitors. A plaque reduction neutralization test using authentic SARS-CoV-2 virus in Vero E6 cells confirmed that 2 of these drugs (Etravirine and Dolutegravir) significantly inhibited the infection of SARS-CoV-2. With molecular docking, we showed that both Etravirine and Dolutegravir are preferentially bound to primary ACE2-interacting residues on the RBD domain, implying that these two drug blocks may prohibit the viral attachment of SARS-CoV-2. We compared the neutralizing activities of these entry inhibitors against different pseudoviruses carrying spike proteins from alpha, beta, gamma, and delta variants. Both Etravirine and Dolutegravir showed similar neutralizing activities against different variants, with EC50 values between 4.5 to 5.8 nM for Etravirine and 10.2 to 22.9 nM for Dolutegravir. These data implied that Etravirine and Dolutegravir may serve as general spike inhibitors against dominant viral variants of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , RNA Viral , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-33526482

RESUMO

Coronavirus (CoV) disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has claimed many lives worldwide and is still spreading since December 2019. The 3C-like protease (3CLpro) and papain-like protease (PLpro) are essential for maturation of viral polyproteins in SARS-CoV-2 life cycle and thus regarded as key drug targets for the disease. In this study, 3CLpro and PLpro assay platforms were established, and their substrate specificities were characterized. The assays were used to screen collections of 1,068 and 2,701 FDA-approved drugs. After excluding the externally used drugs which are too toxic, we totally identified 12 drugs as 3CLpro inhibitors and 36 drugs as PLpro inhibitors active at 10 µM. Among these inhibitors, six drugs were found to suppress SARS-CoV-2 with the half-maximal effective concentration (EC50) below or close to 10 µM. This study enhances our understanding on the proteases and provides FDA-approved drugs for prevention and/or treatment of COVID-19.


Assuntos
Antivirais/farmacologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Humanos , Cinética , SARS-CoV-2/metabolismo , Especificidade por Substrato , Células Vero
13.
PLoS Comput Biol ; 16(5): e1007883, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401790

RESUMO

Cell culture remains as the golden standard for primary isolation of viruses in clinical specimens. In the current practice, researchers have to recognize the cytopathic effects (CPE) induced by virus infection and subsequently use virus-specific monoclonal antibody to confirm the presence of virus. Considering the broad applications of neural network in various fields, we aimed to utilize convolutional neural networks (CNN) to shorten the timing required for CPE identification and to improve the assay sensitivity. Based on the characteristics of influenza-induced CPE, a CNN model with larger sizes of filters and max-pooling kernels was constructed in the absence of transfer learning. A total of 601 images from mock-infected and influenza-infected MDCK cells were used to train the model. The performance of the model was tested by using extra 400 images and the percentage of correct recognition was 99.75%. To further examine the limit of our model in evaluating the changes of CPE overtime, additional 1190 images from a new experiment were used and the recognition rates at 16 hour (hr), 28 hr, and 40 hr post virus infection were 71.80%, 98.25%, and 87.46%, respectively. The specificity of our model, examined by images of MDCK cells infected by six other non-influenza viruses, was 100%. Hence, a simple CNN model was established to enhance the identification of influenza virus in clinical practice.


Assuntos
Efeito Citopatogênico Viral , Redes Neurais de Computação , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Cães , Células Madin Darby de Rim Canino , Orthomyxoviridae/imunologia
14.
J Formos Med Assoc ; 120(12): 2186-2190, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33933336

RESUMO

We presented the clinical course and immune responses of a well-controlled HIV-positive patient with COVID-19. The clinical presentation and antibody production to SARS-CoV-2 were similar to other COVID-19 patients without HIV infection. Neutralizing antibody reached a plateau from 26th to 47th day onset but decreased on 157th day after symptoms.


Assuntos
COVID-19 , Infecções por HIV , Anticorpos Neutralizantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/complicações , Humanos , Imunoglobulina G , SARS-CoV-2
15.
16.
ACS Omega ; 9(22): 23984-23997, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854515

RESUMO

The causative pathogen of COVID-19, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), utilizes the receptor-binding domain (RBD) of the spike protein to bind to human receptor angiotensin-converting enzyme 2 (ACE2). Further cleavage of spike by human proteases furin, TMPRSS2, and/or cathepsin L facilitates viral entry into the host cells for replication, where the maturation of polyproteins by 3C-like protease (3CLpro) and papain-like protease (PLpro) yields functional nonstructural proteins (NSPs) such as RNA-dependent RNA polymerase (RdRp) to synthesize mRNA of structural proteins. By testing the tea polyphenol-related natural products through various assays, we found that the active antivirals prevented SARS-CoV-2 entry by blocking the RBD/ACE2 interaction and inhibiting the relevant human proteases, although some also inhibited the viral enzymes essential for replication. Due to their multitargeting properties, these compounds were often misinterpreted for their antiviral mechanisms. In this study, we provide a systematic protocol to check and clarify their anti-SARS-CoV-2 mechanisms, which should be applicable for all of the antivirals.

17.
J Clin Virol Plus ; 3(1): 100133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36594045

RESUMO

Although real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) remains as a golden standard for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it can not be easily expanded to large-scaled screening during outbreaks, and the positive results do not necessarily correlate with infectious status of the identified subjects. In this study, the performance of Vstrip® RV2 COVID-19 Antigen Rapid Test (RAT) and its correlation with virus infectivity was examined by virus culture using 163 sequential respiratory specimens collected from 26 SARS-CoV-2 infected patients. When the presence of cytopathic effects (CPE) in cell culture was used as a reference method for virus infectivity, the sensitivity, specificity and accuracy of Vstrip® RV2 COVID-19 Antigen Rapid Test was 96.43%, 89.63%, and 90.8%, respectively. The highest Ct value was 27.7 for RdRp gene and 25.79 for E gene within CPE-positive samples, and the highest Ct value was 31.9 for RdRp gene and 29.1 for E gene within RAT positive samples. When the Ct values of specimens were below 25, the CPE and RAT results had high degree of consistency. We concluded that the RAT could be a great alternative method for determining the infectious potential of individuals with high viral load.

19.
Biochem Pharmacol ; 215: 115688, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481137

RESUMO

Fucoidans are a class of long chain sulfated polysaccharides and have multiple biological functions. Herein, four natural fucoidans extracted from Fucus vesiculosus, F. serratus, Laminaria japonica and Undaria pinnatifida, were tested for their HCoV-OC43 inhibition and found to demonstrate EC50 values ranging from 0.15 to 0.61 µg/mL. That from U. pinnatifida exhibited the most potent anti-HCoV-OC43 activity with an EC50 value of 0.15 ± 0.02 µg/mL, a potency largely independent of its sulfate content. Comparison of the gene expression profiles of fucoidan-treated and untreated cells infected with HCoV-OC43 revealed that fucoidan treatment effectively diminished HCoV-OC43 gene expressions associated with induced chemokines, cytokines and viral activities. Further studies using a highly fucoidan-resistant HCoV-OC43 determined that fucoidan inhibited HCoV-OC43 infection via interfering with viral entry and led to the identification of the specific site on the N-terminal region of spike protein, that located adjacent to the host cell receptor binding domain, targeted by the virus. Furthermore, in a SARS-CoV-2 pseudovirus neutralization assay, fucoidan also blocked SARS-CoV-2 entry. In vitro and in vivo, fucoidan decreased SARS-CoV-2 viral loads and inhibited viral infection in Calu-3 or Vero E6 cells and SARS-CoV-2 infected hamsters, respectively. Fucoidan was also found to inhibit furin activity, and reported furin inhibitors were found to inhibit viral infection by wild type HCoV-OC43 or SARS-CoV-2. Accordingly, we conclude that fucoidans inhibit coronaviral infection by targeting viral spike protein and host cell furin to interfere with viral entry.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Animais , Cricetinae , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Furina/metabolismo
20.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158982

RESUMO

Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Camundongos , Antivirais , SARS-CoV-2 , Receptor 3 Toll-Like , Genes src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA