Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4919, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559686

RESUMO

Chronic inflammation and concomitant oxidative stress can induce mitochondrial dysfunction due to cardiolipin (CL) abnormalities in the mitochondrial inner membrane. To examine the responses of mitochondria to inflammation, macrophage-like RAW264.7 cells were activated by Kdo2-Lipid A (KLA) in our inflammation model, and then the mitochondrial CL profile, mitochondrial activity, and the mRNA expression of CL metabolism-related genes were examined. The results demonstrated that KLA activation caused CL desaturation and the partial loss of mitochondrial activity. KLA activation also induced the gene upregulation of cyclooxygenase (COX)-2 and phospholipid scramblase 3, and the gene downregulation of COX-1, lipoxygenase 5, and Δ-6 desaturase. We further examined the phophatidylglycerol (PG) inhibition effects on inflammation. PG supplementation resulted in a 358-fold inhibition of COX-2 mRNA expression. PG(18:1)2 and PG(18:2)2 were incorporated into CLs to considerably alter the CL profile. The decreased CL and increased monolysocardiolipin (MLCL) quantity resulted in a reduced CL/MLCL ratio. KLA-activated macrophages responded differentially to PG(18:1)2 and PG(18:2)2 supplementation. Specifically, PG(18:1)2 induced less changes in the CL/MLCL ratio than did PG(18:2)2, which resulted in a 50% reduction in the CL/MLCL ratio. However, both PG types rescued 20-30% of the mitochondrial activity that had been affected by KLA activation.


Assuntos
Cardiolipinas/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfatidilgliceróis/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Camundongos , Células RAW 264.7
2.
PLoS One ; 13(3): e0193042, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494608

RESUMO

The zebrafish (Danio rerio) is an important and widely used vertebrate model organism for the study of human diseases which include disorders caused by dysfunctional mitochondria. Mitochondria play an essential role in both energy metabolism and apoptosis, which are mediated through a mitochondrial phospholipid cardiolipin (CL). In order to examine the cardiolipin profile in the zebrafish model, we developed a CL analysis platform by using liquid chromatography-mass spectrometry (LC-MS). Meanwhile, we tested whether chlorella diet would alter the CL profile in the larval fish, and in various organs of the adult fish. The results showed that chlorella diet increased the chain length of CL in larval fish. In the adult zebrafish, the distribution patterns of CL species were similar between the adult brain and eye tissues, and between the heart and muscles. Interestingly, monolyso-cardiolipin (MLCL) was not detected in brain and eyes but found in other examined tissues, indicating a different remodeling mechanism to maintain the CL integrity. While the adult zebrafish were fed with chlorella for four weeks, the CL distribution showed an increase of the species of saturated acyl chains in the brain and eyes, but a decrease in the other organs. Moreover, chlorella diet led to a decrease of MLCL percentage in organs except the non-MLCL-containing brain and eyes. The CL analysis in the zebrafish provides an important tool for studying the mechanism of mitochondria diseases, and may also be useful for testing medical regimens targeting against the Barth Syndrome.


Assuntos
Cardiolipinas/metabolismo , Dieta , Mitocôndrias/metabolismo , Peixe-Zebra/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Síndrome de Barth/metabolismo , Cardiolipinas/análise , Chlorella/metabolismo , Metabolismo Energético , Feminino
3.
PLoS One ; 11(9): e0162457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627658

RESUMO

Chemotherapy drugs have been prescribed for the systemic treatment of cancer. We selected three chemotherapy drugs, including methotrexate, mitomycine C and vincristine to inhibit the proliferation of HT1080 human fibrosarcoma cells in S, G2 and M phases of the cell cycle respectively. These chemotherapy drugs showed significant toxicity and growth inhibition to the cancer cells measured by MTT assay. After treated with a 50% inhibitory dosage for 48 hours, these cancer cells showed significant accumulation of cardiolipin (CL), which was a reverse trend of the nutritional deficiency induced arrest at G1 phase. The quantity of each CL species was further semi-quantitated by HPLC-ion trap mass spectrometer. Methotraxate treatment caused unique increases of acyl chain length on CL, which were the opposite of the serum starvation, mitomycine C and vincristine treatments. Although mitomycine C and vincristine have different mechanisms to induce cell cycle arrest, these two drugs displayed similar effects on decreasing chain length of CL. Continuation of CL synthesis during cell cycle arrest indicated the chemotherapy drugs resulting in the discoordination of the mitochondrial life cycle from the cell cycle and thus caused the accumulation of CL. These finding reveals that the pre-remodeling nascent CL accumulates during the methotraxate induced arrest; however, the post-remodeling mature CL accumulates during the mitomycine C and vincristine induced arrest after the synthesis phase.


Assuntos
Antineoplásicos/farmacologia , Cardiolipinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Mitocôndrias/metabolismo
4.
J Nutr Biochem ; 26(7): 769-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25866137

RESUMO

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), known as ω-3 polyunsaturated fatty acid (PUFA), are common nutrients in daily food intake and have been shown to prevent cardiovascular disease and improve cardiac functions. Cardiolipin is a mitochondrial phospholipid necessary for maintaining physiological function of mitochondria. Several studies have indicated that the cardiolipin acyl chain compositions affect the function of cardiolipin and mitochondria. Here, we investigated the structural changes of cardiolipin after DHA and EPA supplementation and compared them to arachidonic acid (AA) treatment. H9c2 cardiac myoblast was used as a cell model, and cardiolipin species was monitored and identified via LC-MS and MS/MS. Our results showed distinct mass envelopes of cardiolipin with the same carbon number but different double bonds in mass spectrum. There were 116 cardiolipin species with 36 distinct mass in 6 mass envelopes identified by MS/MS. Three days of PUFA treatment resulted in decreases of low-molecular-weight cardiolipin and increases of high-molecular-weight cardiolipin, suggesting the incorporation of exogenous DHA, EPA and AA into mitochondrial cardiolipin. PUFA incorporation was further verified by MS/MS analysis. More importantly, we found that DHA supplementation elevated the percent content of less unsaturated cardiolipin species and highly unsaturated cardiolipin species, containing ω-3 fatty acyl chains, indicating a ω-3 fatty acid incorporation mechanism with peroxidation protection. Our results indicate that PUFA supplementation differentially perturbed the fatty acyl chain compositions in the mitochondrial cardiolipin in the H9c2 cardiac myoblast, suggesting that mitochondrial membrane and the function of mitochondria are susceptible to exogenous lipid species.


Assuntos
Cardiolipinas/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Mitocôndrias Cardíacas/metabolismo , Modelos Moleculares , Mioblastos/metabolismo , Animais , Cardiolipinas/química , Linhagem Celular , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Gorduras Insaturadas na Dieta/efeitos adversos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/efeitos adversos , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/efeitos adversos , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/efeitos adversos , Ácidos Graxos Ômega-6/química , Estrutura Molecular , Peso Molecular , Concentração Osmolar , Ratos , Espectrometria de Massas em Tandem
5.
PLoS One ; 9(11): e113680, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25422939

RESUMO

Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.


Assuntos
Cardiolipinas/fisiologia , Ciclo Celular , Sobrevivência Celular , Linhagem Celular Tumoral , Cromatografia Líquida , Citometria de Fluxo , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA