Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Plant J ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39467186

RESUMO

Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis. Here we identified several key LD biogenesis proteins in the seeds of pennycress, a potential biofuel crop, that were correlated previously with seed oil content and characterized here for their participation in LD formation in transient expression assays and stable transgenics. One pennycress protein, the lipid droplet associated protein-interacting protein (LDIP), was able to functionally complement the Arabidopsis ldip mutant, emphasizing the close conservation of lipid storage among these two Brassicas. Moreover, loss-of-function ldip mutants in pennycress exhibited increased seed oil content without compromising plant growth, raising the possibility that LDIP or other LD biogenesis factors may be suitable targets for improving yields in oilseed crops more broadly.

2.
Plant Cell ; 34(1): 10-52, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633455

RESUMO

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Plantas/metabolismo , Organelas/metabolismo , Células Vegetais/metabolismo
3.
Plant Physiol ; 191(2): 1234-1253, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36472510

RESUMO

Polyunsaturated N-acylethanolamines (NAEs) can be hydrolyzed by fatty acid amide hydrolase (FAAH) or oxidized by lipoxygenase (LOX). In Arabidopsis (Arabidopsis thaliana), the 9-LOX product of linoleoylethanolamide, namely, 9-hydroxy linoleoylethanolamide (9-NAE-HOD), is reported to negatively regulate seedling development during secondary dormancy. In upland cotton (Gossypium hirsutum L.), six putative FAAH genes (from two diverged groups) and six potential 9-LOX genes are present; however, their involvement in 9-NAE-HOD metabolism and its regulation of seedling development remain unexplored. Here, we report that in cotton plants, two specific FAAH isoforms (GhFAAH Ib and GhFAAH IIb) are needed for hydrolysis of certain endogenous NAEs. Virus-induced gene silencing (VIGS) of either or both FAAHs led to reduced seedling growth and this coincided with reduced amidohydrolase activities and elevated quantities of endogenous 9-NAE-HOD. Transcripts of GhLOX21 were consistently elevated in FAAH-silenced tissues, and co-silencing of GhLOX21 and GhFAAH (Ib and/or IIb) led to reversal of seedling growth to normal levels (comparable with no silencing). This was concomitant with reductions in the levels of 9-NAE-HOD, but not of 13-NAE-HOD. Pharmacological experiments corroborated the genetic and biochemical evidence, demonstrating that direct application of 9-NAE-HOD, but not 13-NAE-HOD or their corresponding free fatty acid oxylipins, inhibited the growth of cotton seedlings. Additionally, VIGS of GhLOX21 in cotton lines overexpressing AtFAAH exhibited enhanced growth and no detectable 9-NAE-HOD. Altogether, we conclude that the growth of cotton seedlings involves fine-tuning of 9-NAE-HOD levels via FAAH-mediated hydrolysis and LOX-mediated production, expanding the mechanistic understanding of plant growth modulation by NAE oxylipins to a perennial crop species.


Assuntos
Arabidopsis , Plântula , Plântula/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Lipoxigenase/metabolismo , Arabidopsis/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo
4.
J Exp Bot ; 75(6): 1654-1670, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889862

RESUMO

Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.


Assuntos
Metaboloma , Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Plantas/metabolismo , Raízes de Plantas/metabolismo , Sementes
5.
Plant Cell ; 33(9): 3076-3103, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34244767

RESUMO

Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Gotículas Lipídicas/fisiologia , Biogênese de Organelas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
6.
Plant Cell ; 32(9): 2932-2950, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690719

RESUMO

SEIPIN proteins are localized to endoplasmic reticulum (ER)-lipid droplet (LD) junctions where they mediate the directional formation of LDs into the cytoplasm in eukaryotic cells. Unlike in animal and yeast cells, which have single SEIPIN genes, plants have three distinct SEIPIN isoforms encoded by separate genes. The mechanism of SEIPIN action remains poorly understood, and here we demonstrate that part of the function of two SEIPIN isoforms in Arabidopsis (Arabidopsis thaliana), AtSEIPIN2 and AtSEIPIN3, may depend on their interaction with the vesicle-associated membrane protein (VAMP)-associated protein (VAP) family member AtVAP27-1. VAPs have well-established roles in the formation of membrane contact sites and lipid transfer between the ER and other organelles, and here, we used a combination of biochemical, cell biology, and genetics approaches to show that AtVAP27-1 interacts with the N termini of AtSEIPIN2 and AtSEIPIN3 and likely supports the normal formation of LDs. This insight indicates that the ER membrane tethering machinery in plant cells could play a role with select SEIPIN isoforms in LD biogenesis at the ER, and additional experimental evidence in Saccharomyces cerevisiae supports the possibility that this interaction may be important in other eukaryotic systems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Filogenia , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Sementes/metabolismo , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Cell ; 32(7): 2383-2401, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358071

RESUMO

The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.


Assuntos
Brassica napus/citologia , Brassica napus/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/citologia , Sementes/metabolismo , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Aminoácidos/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brassica napus/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Nitrogênio/metabolismo , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Proteínas de Armazenamento de Sementes/genética
8.
Biochem J ; 479(6): 805-823, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298586

RESUMO

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Assuntos
Brassica napus , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Sementes/metabolismo
9.
Semin Cell Dev Biol ; 108: 82-93, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32147380

RESUMO

Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.


Assuntos
Eucariotos/metabolismo , Gotículas Lipídicas/metabolismo , Plantas/metabolismo , Modelos Biológicos , Especificidade da Espécie , Triglicerídeos/metabolismo
10.
New Phytol ; 236(3): 833-838, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35851478

RESUMO

The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).


Assuntos
Amigos , Gotículas Lipídicas , Retículo Endoplasmático/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Plantas , Triglicerídeos/metabolismo
11.
Plant Biotechnol J ; 19(6): 1268-1282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33492748

RESUMO

Upland cotton (Gossypium hirsutum L.) is an economically important multi-purpose crop cultivated globally for fibre, seed oil and protein. Cottonseed oil also is naturally rich in vitamin E components (collectively known as tocochromanols), with α- and γ-tocopherols comprising nearly all of the vitamin E components. By contrast, cottonseeds have little or no tocotrienols, tocochromanols with a wide range of health benefits. Here, we generated transgenic cotton lines expressing the barley (Hordeum vulgare) homogentisate geranylgeranyl transferase coding sequence under the control of the Brassica napus seed-specific promoter, napin. Transgenic cottonseeds had ~twofold to threefold increases in the accumulation of total vitamin E (tocopherols + tocotrienols), with more than 60% γ-tocotrienol. Matrix assisted laser desorption ionization-mass spectrometry imaging showed that γ-tocotrienol was localized throughout the transgenic embryos. In contrast, the native tocopherols were distributed unequally in both transgenic and non-transgenic embryos. α- Tocopherol was restricted mostly to cotyledon tissues and γ-tocopherol was more enriched in the embryonic axis tissues. Production of tocotrienols in cotton embryos had no negative impact on plant performance or yield of other important seed constituents including fibre, oil and protein. Advanced generations of two transgenic events were field grown, and extracts of transgenic seeds showed increased antioxidant activity relative to extracts from non-transgenic seeds. Furthermore, refined cottonseed oil from the two transgenic events showed 30% improvement in oxidative stability relative to the non-transgenic cottonseed oil. Taken together, these materials may provide new opportunities for cottonseed co-products with enhanced vitamin E profile for improved shelf life and nutrition.


Assuntos
Gossypium , Tocotrienóis , Suplementos Nutricionais , Gossypium/genética , Estresse Oxidativo , Sementes , Tocoferóis
12.
Plant Physiol ; 184(1): 459-477, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32665332

RESUMO

In animals, several long-chain N-acylethanolamines (NAEs) have been identified as endocannabinoids and are autocrine signals that operate through cell surface G-protein-coupled cannabinoid receptors. Despite the occurrence of NAEs in land plants, including nonvascular plants, their precise signaling properties and molecular targets are not well defined. Here we show that the activity of N-linolenoylethanolamine (NAE 18:3) requires an intact G-protein complex. Specifically, genetic ablation of the Gßγ dimer or loss of the full set of atypical Gα subunits strongly attenuates an NAE-18:3-induced degreening of cotyledons in Arabidopsis (Arabidopsis thaliana) seedlings. This effect involves, at least in part, transcriptional regulation of chlorophyll biosynthesis and catabolism genes. In addition, there is feedforward transcriptional control of G-protein signaling components and G-protein interactors. These results are consistent with NAE 18:3 being a lipid signaling molecule in plants with a requirement for G-proteins to mediate signal transduction, a situation similar, but not identical, to the action of NAE endocannabinoids in animal systems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plântula/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
J Biol Chem ; 294(18): 7419-7432, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894416

RESUMO

N-Acylethanolamines (NAEs) are fatty acid derivatives that in animal systems include the well-known bioactive metabolites of the endocannabinoid signaling pathway. Plants use NAE signaling as well, and these bioactive molecules often have oxygenated acyl moieties. Here, we report the three-dimensional crystal structures of the signal-terminating enzyme fatty acid amide hydrolase (FAAH) from Arabidopsis in its apo and ligand-bound forms at 2.1- and 3.2-Å resolutions, respectively. This plant FAAH structure revealed features distinct from those of the only other available FAAH structure (rat). The structures disclosed that although catalytic residues are conserved with the mammalian enzyme, AtFAAH has a more open substrate-binding pocket that is partially lined with polar residues. Fundamental differences in the organization of the membrane-binding "cap" and the membrane access channel also were evident. In accordance with the observed structural features of the substrate-binding pocket, kinetic analysis showed that AtFAAH efficiently uses both unsubstituted and oxygenated acylethanolamides as substrates. Moreover, comparison of the apo and ligand-bound AtFAAH structures identified three discrete sets of conformational changes that accompany ligand binding, suggesting a unique "squeeze and lock" substrate-binding mechanism. Using molecular dynamics simulations, we evaluated these conformational changes further and noted a partial unfolding of a random-coil helix within the region 531-537 in the apo structure but not in the ligand-bound form, indicating that this region likely confers plasticity to the substrate-binding pocket. We conclude that the structural divergence in bioactive acylethanolamides in plants is reflected in part in the structural and functional properties of plant FAAHs.


Assuntos
Amidoidrolases/química , Arabidopsis/enzimologia , Evolução Biológica , Amidoidrolases/metabolismo , Animais , Etanolaminas/química , Ligantes , Conformação Proteica , Ratos , Especificidade por Substrato
14.
Biochem J ; 476(13): 1929-1942, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289128

RESUMO

Lipid droplets (LDs) are organelles that compartmentalize nonbilayer-forming lipids in the aqueous cytoplasm of cells. They are ubiquitous in most organisms, including in animals, protists, plants and microorganisms. In eukaryotes, LDs are believed to be derived by a budding and scission process from the surface of the endoplasmic reticulum, and this occurs concomitantly with the accumulation of neutral lipids, most often triacylglycerols and steryl esters. Overall, the mechanisms underlying LD biogenesis are difficult to generalize, in part because of the involvement of different sets of both evolutionarily conserved and organism-specific LD-packaging proteins. Here, we briefly compare and contrast these proteins and the allied processes responsible for LD biogenesis in cells of animals, yeasts and plants.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Plantas/metabolismo , Triglicerídeos/metabolismo , Leveduras/metabolismo , Animais , Humanos
15.
Plant J ; 94(6): 915-932, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752761

RESUMO

Despite the importance of oilseeds to worldwide human nutrition, and more recently to the production of bio-based diesel fuels, the detailed mechanisms regulating seed oil biosynthesis remain only partly understood, especially from a tissue-specific perspective. Here, we investigated the spatial distributions of lipid metabolites and transcripts involved in oil biosynthesis from seeds of two low-erucic acid genotypes of Brassica napus with high and low seed-oil content. Integrated results from matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of lipids in situ, lipidome profiling of extracts from seed tissues, and tissue-specific transcriptome analysis revealed complex spatial distribution patterns of lipids and transcripts. In general, it appeared that many triacylglycerol and phosphatidylcholine species distributed heterogeneously throughout the embryos. Tissue-specific transcriptome analysis identified key genes involved in de novo fatty acid biosynthesis in plastid, triacylglycerols assembly and lipid droplet packaging in the endoplasmic reticulum (ER) that may contribute to the high or low oil phenotype and heterogeneity of lipid distribution. Our results imply that transcriptional regulation represents an important means of impacting lipid compartmentalization in oil seeds. While much information remains to be learned about the intricacies of seed oil accumulation and distribution, these studies highlight the advances that come from evaluating lipid metabolism within a spatial context and with multiple omics level datasets.


Assuntos
Brassica napus/metabolismo , Metabolismo dos Lipídeos , Sementes/metabolismo , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Lipídeos/química , Óleos de Plantas/análise , Óleos de Plantas/metabolismo , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Planta ; 250(1): 79-94, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919065

RESUMO

MAIN CONCLUSION: Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells. Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.


Assuntos
Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Sesquiterpenos/metabolismo , Triglicerídeos/metabolismo , Animais , Vias Biossintéticas , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/química , Proteínas de Membrana/genética , Camundongos , Especificidade de Órgãos , Células Vegetais/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteômica , Sesquiterpenos/análise , Terpenos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Triglicerídeos/análise
17.
Metabolomics ; 15(1): 6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30830477

RESUMO

INTRODUCTION: Castor (Ricinus communis L.) seeds are valued for their production of oils which can comprise up to 90% hydroxy-fatty acids (ricinoleic acid). Castor oil contains mono-, di- and tri- ricinoleic acid containing triacylglycerols (TAGs). Although the enzymatic synthesis of ricinoleic acid is well described, the differential compartmentalization of these TAG molecular species has remained undefined. OBJECTIVES: To examine the distribution of hydroxy fatty acid accumulation within the endosperm and embryo tissues of castor seeds. METHODS: Matrix assisted laser desorption/ionization mass spectrometry imaging was used to map the distribution of triacylglycerols in tissue sections of castor seeds. In addition, the endosperm and embryo (cotyledons and embryonic axis) tissues were dissected and extracted for quantitative lipidomics analysis and Illumina-based RNA deep sequencing. RESULTS: This study revealed an unexpected heterogeneous tissue distribution of mono-, di- and tri- hydroxy-triacylglycerols in the embryo and endosperm tissues of castor seeds. Pathway analysis based on transcript abundance suggested that distinct embryo- and endosperm-specific mechanisms may exist for the shuttling of ricinoleic acid away from phosphatidylcholine (PC) and into hydroxy TAG production. The embryo-biased mechanism appears to favor removal of ricinoleic acid from PC through phophatidylcholine: diacylglycerol acyltransferase while the endosperm pathway appears to remove ricinoleic acid from the PC pool by preferences of phospholipase A (PLA2α) and/or phosphatidylcholine: diacylglycerol cholinephosphotransferase. CONCLUSIONS: Collectively, a combination of lipidomics and transcriptomics analyses revealed previously undefined spatial aspects of hydroxy fatty acid metabolism in castor seeds. These studies underscore a need for tissue-specific studies as a means to better understand the regulation of triacylglycerol accumulation in oilseeds.


Assuntos
Ácidos Ricinoleicos/metabolismo , Ricinus/metabolismo , Ricinus communis/metabolismo , Óleo de Rícino/metabolismo , Diacilglicerol Colinofosfotransferase , Ácidos Graxos/metabolismo , Fosfolipases A2 do Grupo IV , Fosfatidilcolinas , Ácidos Ricinoleicos/análise , Ricinus/química , Ricinus/genética , Sementes/química , Sementes/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/metabolismo
18.
Plant J ; 92(6): 1182-1201, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083105

RESUMO

Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady-state maintenance and turnover of plant LDs, particularly in non-seed tissues, are relatively unknown. Previously, we showed that the LD-associated proteins (LDAPs) are a family of plant-specific, LD surface-associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two-hybrid library using the Arabidopsis LDAP3 isoform as 'bait' in an effort to identify other novel LD protein constituents. One of the candidate LDAP3-interacting proteins was Arabidopsis At5g16550, which is a plant-specific protein of unknown function that we termed LDIP (LDAP-interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α-helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T-DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gotículas Lipídicas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Homeostase , Biogênese de Organelas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transporte Proteico , Sementes/genética , Sementes/metabolismo
19.
Plant Biotechnol J ; 16(4): 926-938, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28929610

RESUMO

Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co-expression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Ciclopropanos/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Diglicerídeos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Germinação , Lipídeos/análise , Lipídeos/química , Metiltransferases/genética , Metiltransferases/metabolismo , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sterculia/genética , Triglicerídeos/metabolismo
20.
Plant Cell ; 27(9): 2616-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26362606

RESUMO

The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Triglicerídeos/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA