Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Ultrason Imaging ; 39(5): 295-312, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28492108

RESUMO

Degenerative discopathy is a common pathology that may require spine surgery. A metallic cylindrical pin is inserted into the vertebral body to maintain soft tissues and may be used as a reflector of ultrasonic wave to estimate bone density. The first aim of this paper is to validate a three-dimensional (3-D) model to simulate the ultrasonic propagation in a trabecular bone sample in which a metallic pin has been inserted. We also aim at determining the effect of changes of bone volume fraction (BV/TV) and of positioning errors on the quantitative ultrasound (QUS) parameters in this specific configuration. The approach consists in coupling finite-difference time-domain simulation with X-ray microcomputed tomography. The correlation coefficient between experimental and simulated speed of sound (SOS)-respectively, broadband ultrasonic attenuation (BUA)-was equal to 0.90 (respectively, 0.55). The results show a significant correlation of SOS with BV/TV ( R = 0.82), while BUA values exhibit a nonlinear behavior versus BV/TV. The orientation of the pin should be controlled with an accuracy of around 1° to obtain accurate results. The results indicate that using the ultrasonic wave reflected by a pin has a potential to estimate the bone density. SOS is more reliable than BUA due to its lower sensitivity to the tilt angle.


Assuntos
Pinos Ortopédicos , Osso Esponjoso/diagnóstico por imagem , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Animais , Fêmur , Metais , Modelos Animais , Suínos
2.
J Synchrotron Radiat ; 21(Pt 1): 136-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365928

RESUMO

Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.


Assuntos
Apatitas/química , Espectrometria por Raios X/métodos , Estrôncio/análise , Espectroscopia por Absorção de Raios X/métodos , Calcificação Fisiológica , Calcinose , Humanos
3.
Med Phys ; 51(6): 4056-4068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687086

RESUMO

BACKGROUND: Accurate tomographic reconstructions require the knowledge of the actual acquisition geometry. Many mobile C-arm CT scanners have poorly reproducible acquisition geometries and thus need acquisition-specific calibration procedures. Most of geometric self-calibration methods based on projection data either need prior information or are limited to the estimation of a low number of geometric calibration parameters. Other self-calibration methods generally use a calibration pattern with known geometry and are hardly implementable in practice for clinical applications. PURPOSE: We present a three-step marker based self-calibration method which does not require the prior knowledge of the calibration pattern and thus enables the use of calibration patterns with arbitrary markers positions. METHODS: The first step of the method aims at detecting the set of markers of the calibration pattern in each projection of the CT scan and is performed using the YOLO (You Only Look Once) Convolutional Neural Network. The projected marker trajectories are then estimated by a sequential projection-wise marker association scheme based on the Linear Assignment Problem which uses Kalman filters to predict the markers 2D positions in the projections. The acquisition geometry is finally estimated from the marker trajectories using the Bundle-adjustment algorithm. RESULTS: The calibration method has been tested on realistic simulated images of the ICRP (International Commission on Radiological Protection) phantom, using calibration patterns with 10 and 20 markers. The backprojection error was used to evaluate the self-calibration method and exhibited sub-millimeter errors. Real images of two human knees with 10 and 30 markers calibration patterns were then used to perform a qualitative evaluation of the method, which showed a remarkable artifacts reduction and bone structures visibility improvement. CONCLUSIONS: The proposed calibration method gave promising results that pave the way to patient-specific geometric self-calibrations in clinics.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Humanos
4.
J Clin Densitom ; 16(2): 244-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23473958

RESUMO

Our study aimed at comparing bone mineral density (BMD), geometric indices of hip bone strength, and indices of trabecular bone texture at the calcaneus in obese and normal-weight children. Fifty-three obese children (10.3 ± 1.4 yr) and 24 normal-weight children (10.4 ± 1.5 yr) participated in this study. Body composition, bone mineral content, and BMD at whole body (WB), lumbar spine (L2-L4), total forearm, and proximal femur (total hip [TH] and femoral neck [FN]) were measured by dual-energy X-ray absorptiometry (DXA). Bone geometry of the hip was evaluated by the hip structure analysis (HSA) program. DXA scans were analyzed at the FN at its narrowest region and the femoral shaft (FS) by the HSA program. Cross-sectional area (CSA) and section modulus (Z) were measured from hip BMD profiles. Texture analysis was performed on digitized radiographs of the calcaneus to assess trabecular bone microarchitecture, and the result was expressed as Hmean. WB BMD, L2-L4 BMD, TH BMD, and FN BMD were significantly higher in obese children compared with normal-weight peers (p < 0.05). FN Z and FS Z were not significantly different between the 2 groups, whereas Hmean parameter was significantly lower in obese children compared with normal-weight peers (p < 0.001). After adjustment for body weight, obese children displayed lower WB BMD, FN CSA, FN Z, FS CSA, and FS Z compared with normal-weight children. This study suggests that BMD of WB and geometric indices of hip bone strength are not adapted to the increased body weight in obese children.


Assuntos
Densidade Óssea/fisiologia , Calcâneo/fisiologia , Fêmur/fisiologia , Obesidade/fisiopatologia , Composição Corporal , Peso Corporal/fisiologia , Criança , Estudos Transversais , Feminino , Colo do Fêmur/fisiologia , Humanos , Masculino
5.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176232

RESUMO

Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.

6.
Sci Rep ; 13(1): 11080, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422514

RESUMO

Spectral photon-counting computed tomography (SPCCT) is a new technique with the capability to provide mono-energetic (monoE) images with high signal to noise ratio. We demonstrate the feasibility of SPCCT to characterize at the same time cartilage and subchondral bone cysts (SBCs) without contrast agent in osteoarthritis (OA). To achieve this goal, 10 human knee specimens (6 normal and 4 with OA) were imaged with a clinical prototype SPCCT. The monoE images at 60 keV with isotropic voxels of 250 × 250 × 250 µm3 were compared with monoE synchrotron radiation CT (SR micro-CT) images at 55 keV with isotropic voxels of 45 × 45 × 45 µm3 used as benchmark for cartilage segmentation. In the two OA knees with SBCs, the volume and density of SBCs were evaluated in SPCCT images. In 25 compartments (lateral tibial (LT), medial tibial, (MT), lateral femoral (LF), medial femoral and patella), the mean bias between SPCCT and SR micro-CT analyses were 101 ± 272 mm3 for cartilage volume and 0.33 mm ± 0.18 for mean cartilage thickness. Between normal and OA knees, mean cartilage thicknesses were found statistically different (0.005 < p < 0.04) for LT, MT and LF compartments. The 2 OA knees displayed different SBCs profiles in terms of volume, density, and distribution according to size and location. SPCCT with fast acquisitions is able to characterize cartilage morphology and SBCs. SPCCT can be used potentially as a new tool in clinical studies in OA.


Assuntos
Cistos Ósseos , Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Humanos , Articulação do Joelho/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Cistos Ósseos/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem
7.
Med Sci (Paris) ; 28(12): 1111-5, 2012 Dec.
Artigo em Francês | MEDLINE | ID: mdl-23290412

RESUMO

Trabecular bone microarchitecture changes in relation to mechanical stress, effects of age, osteoporosis and anti-osteoporotic drugs. In vivo, these anomalies can be evaluated using textural parameters on high resolution radiographs and images of DXA. It is possible to extract morphological and topological parameters: apparent on MRI images and 3D with a dedicated device called High resolution peripheral quantitative computed tomography (HR-pQCT) with a resolution close to the size of the trabeculae. In vitro, it is possible to obtain on bone samples a 2D analysis by histomorphometry and a 3D analysis from 10 µm images obtained by synchrotron radiation or conventional micro-CT.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osso e Ossos/ultraestrutura , Diagnóstico por Imagem/métodos , Absorciometria de Fóton , Densidade Óssea/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X/métodos
8.
Eur Radiol Exp ; 6(1): 10, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35190914

RESUMO

BACKGROUND: Dual-energy computed tomography has shown a great interest for musculoskeletal pathologies. Photon-counting spectral computed tomography (PCSCT) can acquire data in multiple energy bins with the potential to increase contrast, especially for soft tissues. Our objectives were to assess the value of PCSST to characterise cartilage and to extract quantitative measures of subchondral bone integrity. METHODS: Seven excised human knees (3 males and 4 females; 4 normal and 3 with osteoarthritis; age 80.6 ± 14 years, mean ± standard deviation) were scanned using a clinical PCSCT prototype scanner. Tomographic image reconstruction was performed after Compton/photoelectric decomposition. Virtual monoenergetic images were generated from 40 keV to 110 keV every 10 keV (cubic voxel size 250 × 250 × 250 µm3). After selecting an optimal virtual monoenergetic image, we analysed the grey level histograms of different tissues and extracted quantitative measurements on bone cysts. RESULTS: The optimal monoenergetic images were obtained for 60 keV and 70 keV. Visual inspection revealed that these images provide sufficient spatial resolution and soft-tissue contrast to characterise surfaces, disruption, calcification of cartilage, bone osteophytes, and bone cysts. Analysis of attenuation versus energy revealed different energy fingerprint according to tissues. The volumes and numbers of bone cyst were quantified. CONCLUSIONS: Virtual monoenergetic images may provide direct visualisation of both cartilage and bone details. Thus, unenhanced PCSCT appears to be a new modality for characterising the knee joint with the potential to increase the diagnostic capability of computed tomography for joint diseases and osteoarthritis.


Assuntos
Cistos Ósseos , Osteoartrite do Joelho , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
Clin Endocrinol (Oxf) ; 75(2): 265-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21521300

RESUMO

OBJECTIVE: Osteocalcin is a bone-specific protein secreted by osteoblasts and often used as a bone formation biomarker. Rodent studies have reported a hormonal role of osteocalcin on glucose metabolism, increasing insulin secretion and sensitivity and increasing energy expenditure. However, it is unknown whether osteocalcin fulfils the same function in humans. METHODS: We investigated the relationship between serum osteocalcin and insulin concentrations in 27 prepubertal obese children (9-12 years old) randomly divided into two groups, one of which entered a physical training programme, and 16 nonobese control children. Whole body bone mineral density (WB-BMD), serum osteocalcin, circulating insulin and adiponectin were measured at baseline and after 6 months. RESULTS: Trained and untrained obese children had higher WB-BMD than controls at baseline. Trained children also displayed a significant insulin increase and a significant adiponectin decrease while osteocalcin was increased compared to untrained obese children. Significant linear correlations between WB-BMD and adiponectin, delta BMD (variation between baseline and after-training values) and delta adiponectin, insulin and osteocalcin, delta insulin and delta osteocalcin, delta insulin and delta under-carboxylated osteocalcin were found only in trained obese children with no significant relationship in control and untrained obese children. CONCLUSIONS: In trained obese children, correlations indicate that when BMD is increased, osteocalcin is increased and insulin lowered. This suggests that increased BMD is associated with increased energy metabolism and a decreased level of insulin. We thus report statistically significant relationships between the skeleton (osteocalcin) and energy metabolism (insulin), suggesting a regulatory hormonal loop including osteocalcin and insulin.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético , Insulina/sangue , Obesidade/metabolismo , Osteocalcina/sangue , Adiponectina/sangue , Densidade Óssea , Estudos de Casos e Controles , Criança , Exercício Físico/fisiologia , Humanos
10.
J Clin Densitom ; 14(2): 129-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21474352

RESUMO

The aim was to analyze the associations between high-intensity and long-lasting weight-bearing sports with hip structure in young adults. One hundred and seventy-two subjects aged 17-28 yr were divided into 4 groups: 40 athlete women (10.2 ± 2.2 h/wk), 30 control women, 67 athlete men (11.4 ± 3.6 h/wk), and 35 control men. The nondominant femur, lumbar spine, and whole body were scanned by dual-energy X-ray absorptiometry to assess bone mineral content (BMC) and bone mineral density (BMD). Hip structure analysis (HSA) software was applied to evaluate cross-sectional area, cross-sectional moment of inertia, and section modulus at the femoral neck, intertrochanter, and femoral shaft regions. All the BMC and BMD values were significantly higher in athletes of both sexes compared with controls (p < 0.05). Most of the hip structural parameters were significantly higher (p < 0.05) in athletes compared with controls. Most of the differences were maintained after adjustments for height, weight, and calcium intake. Positively significant correlations were observed between HSA parameters and physical activity variables in both sexes (r > 0.32; p < 0.05). Partial correlation suggested that the hours of practice appeared to have a greater influence than the years of practice on hip bone geometry. These results suggest that external mechanical loading is a strong determinant of hip bone structure when weight-bearing physical activity is commenced before puberty and maintained during adulthood.


Assuntos
Absorciometria de Fóton , Densidade Óssea , Quadril/diagnóstico por imagem , Vértebras Lombares/fisiologia , Atividade Motora/fisiologia , Suporte de Carga/fisiologia , Adolescente , Adulto , Peso Corporal , Feminino , Humanos , Masculino , Valores de Referência , Esportes , Adulto Jovem
11.
Radiology ; 255(2): 536-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20332378

RESUMO

PURPOSE: To use standard radiographs to determine which combination of co-occurrence textural parameters, geometric measurements, and cortical thickness measurements from femur radiographs provided the best estimate of femoral failure load and to compare these with total hip dual-energy x-ray absorptiometry bone mineral density (BMD) evaluation. MATERIALS AND METHODS: Digital radiographs of 40 pairs of excised femurs (24 women, 16 men; mean age, 82 years + or - 12 [standard deviation]) were obtained. Regions of interest in the femoral neck, greater trochanter, intertrochanteric area, and femoral head were then selected. Three textural parameters derived from a co-occurrence matrix were estimated with imaging software. Neck-shaft angle, femoral neck axis length, calcar femorale thickness, and internal and external femoral shaft thickness were assessed. The femurs were randomly allocated to single-stance (femoral neck fracture) or side-impact (intertrochanteric fracture) configurations for failure load measurement. RESULTS: Textural parameters correlated significantly with site-matched BMD. Stepwise regression analysis was performed, and total hip BMD explained 73% and 78% of the failure load in single-stance and side-impact configurations, respectively. Combining internal femoral shaft thickness with one or two textural parameters explained 72%-79% of failure load variance in the single-stance configuration and 63%-76% of failure load variance in the side-impact configuration. CONCLUSION: In these excised femurs, combining textural parameters with cortical thickness measurements had a performance comparable to that of BMD alone in the explanation of femoral failure load.


Assuntos
Fraturas do Fêmur/diagnóstico por imagem , Absorciometria de Fóton , Idoso de 80 Anos ou mais , Densidade Óssea , Cadáver , Estudos Transversais , Feminino , Fraturas do Fêmur/fisiopatologia , Humanos , Masculino , Valor Preditivo dos Testes , Análise de Componente Principal , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Estresse Mecânico
12.
Med Phys ; 37(8): 4364-76, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879596

RESUMO

PURPOSE: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. METHODS: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. RESULTS: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. CONCLUSIONS: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of trabecular bone samples could provide new insight in bone microarchitecture changes related to bone diseases or to those induced by drugs or therapy.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Osso e Ossos/anatomia & histologia , Simulação por Computador , Humanos , Modelos Anatômicos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
13.
Bone ; 134: 115292, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084561

RESUMO

OBJECTIVE: To verify earlier data in cadavers that in female subjects with OA meniscal coverage is associated with lowered bone mineral density of the underlying subchondral bone in the proximal tibia by investigating the local bone mineral density (BMD) distribution within the epiphysis. METHODS: BMD of the subchondral bone of the tibia was measured by QCT in 67 elderly females diagnosed with OA (Kellgren-Lawrence grades 2-3). The epiphysis was subdivided along the axis of the tibia into a subchondral-epiphyseal VOI covering the first 5-6 mm below the subchondral bone plate, a mid-epiphyseal VOI covering the adjacent 7-8 and a juxtaphyseal VOI of another 7-8 mm that bordered the growth plate. These VIOs were further divided into lateral and medial and then into anterior, mid and posterior sub-VOIs. Finally, all subVOIs were divided in one subVOI covered by the menisci (CM) and another not covered by the menisci (nCM). BMD ratios of these two subVOIs were compared. RESULTS: In the subchondral epiphysis BMD was significantly lower (Medial: mean BMDdiff = 125 mg/cm3, p<0.001; Lateral: mean BMDdiff = 56 mg/cm3p < 0.001) in subVOIs covered by the meniscus compared to subVOIs not covered by the meniscus. The BMD difference was no longer significant in the mid epiphysis (Medial: mean BMDdiff = 10 mg/cm3, p>0.82; Lateral: mean BMDdiff = 7 mg/cm3, p=0.99) and was reversed in the juxtaphysis. With a few exceptions these BMD differences were independent of the lateral-medial and the anterior-mid-posterior position. BMD significantly (p<0.05) decreased with age independent on whether the location was covered or uncovered by the meniscus, however the BMD ratio of the corresponding nCM and CM subVOIs did not significantly (p>0.1) change with age. CONCLUSION: In-vivo QCT measurements of the BMD distribution in the proximal tibia indicate a protective effect of the menisci in the subchondral bone close to the joint. This protective effect is age independent despite the overall age-related decrease of BMD.


Assuntos
Densidade Óssea , Menisco , Osteoartrite do Joelho , Tíbia , Idoso , Estudos Transversais , Feminino , Humanos , Tíbia/diagnóstico por imagem
14.
Life (Basel) ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255288

RESUMO

Although physical exercise has unquestionable benefits on bone health, its effects on bone healing have been poorly investigated. This study evaluated the effects of preemptive moderate continuous running on the healing of non-critical sized bone defects in rats by µCT. We hypothesized that a preemptive running exercise would quicken bone healing. Twenty 5-week-old, male, Wistar rats were randomly allocated to one of the following groups (n = 10): sedentary control (SED) or continuous running (EX, 45 min/d, 5 d/week at moderate speed, for 8 consecutive weeks). A 2 mm diameter bone defect was then performed in the right tibia and femur. No exercise was performed during a 4 week-convalescence. Healing-tissue trabecular microarchitectural parameters were assessed once a week for 4 weeks using µCT and plasma bone turnover markers measured at the end of the study protocol (time point T12). At T12, bone volume fraction (BV/TV; BV: bone volume, TV: tissue volume) of the healing tissue in tibiae and femurs from EX rats was higher compared to that in SED rats (p = 0.001). BV/TV in EX rats was also higher in tibiae than in femurs (p < 0.01). The bone mineral density of the healing tissue in femurs from EX rats was higher compared to that in femurs from SED rats (p < 0.03). N-terminal telopeptide of collagen type I in EX rats was decreased compared to SED rats (p < 0.05), while no differences were observed for alkaline phosphatase and parathyroid hormone. The study provides evidence that preemptive moderate continuous running improves the healing of non-critical sized bone defects in male Wistar rats.

15.
Orthop Traumatol Surg Res ; 106(3): 543-550, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32265175

RESUMO

BACKGROUND: Three-dimensional planning (3DP) in total hip arthroplasty using computed tomography (CT) to analyze bone mineral density (BMD) at the stem-femur interface has a high reported accuracy and excellent mid-term results in the literature. However, 3DP does not take into account the effect of femoral rasping on BMD distribution within the rasped cavity. Characterizing the impact of femoral rasping on BMD may help avoid mechanical failures, but this data is not accurately investigated. Therefore, we set out a cadaveric study to identify if: (1) Femoral rasping modified regional BMD in areas considered critical for bone anchorage of cementless metaphyseally fixed anatomic stems. (2) In areas of bone-implant contact with an initial high BMD, does femoral rasping increase BMD? HYPOTHESIS: Femoral rasping increases BMD in some zones considered critical for bone anchorage of cementless metaphyseally fixed anatomic stems within the rasped femoral cavity. METHODS: Four cadaveric femurs were selected to undergo a rasping procedure similar to surgical techniques used for metaphyseally fixed anatomic stems. Images of femurs before and after rasping were obtained with a micro-CT scanner (pixel size 35µm). BMD values before and after rasping were compared in a trabecular bone ring of 3mm thickness around the cavity created by the rasps, in a region extending 3cm above and 2cm below the middle of the lesser trochanter. RESULTS: Average BMD increased significantly after rasping in 3 of the 4 femurs (13% (0.27 to 0.30) (p=0.004)), 12% (0.32 to 0.36 (p=0.034)) and 15% (0.4 to 0.46 (p=0.001)), while there was no significant variation in the last femur (0.32 to 0.32 (p>0.05)). Increases in regional BMD were significantly higher in the lateral and medial areas, as well as in the most distal femoral regions. There were significantly lower variations of BMD in regions with initially higher BMD. DISCUSSION: Current opinion considers trabecular bone debris from femoral rasping to have an impact on final stem position and outcome. Our study has demonstrated an overall positive effect of femoral rasping on BMD in the rasped cavity. Understanding this in the context of 3DP may help avoid mechanical failures such as, suboptimal implant fit, fill, and stability as well as femoral fractures during stem implantation. LEVEL OF EVIDENCE: IV, Prospective in vitro study.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Densidade Óssea , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Estudos Prospectivos , Desenho de Prótese
16.
J Clin Densitom ; 12(1): 22-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19111489

RESUMO

We suggested a new reproducible method to measure densitometric values at mid-third part of the tibia by dual-energy X-ray absorptiometry (DXA; Delphi, Hologic, Waltham, MA) in a population of young adults. Our population was composed of 170 subjects aged 22.7+/-4.0 yr: athlete men (n=67) and women (n=40); control men (n=33) and women (n=30). Athletes practiced collective sports, judo or weightlifting for 10.0+/-3.6 h/wk. We measured bone area (cm2), bone mineral content (BMC, g), and bone mineral density (BMD, g/cm2) at the left total hip and the mid-third part of the tibia with DXA. For the tibia scan, we used the whole body mode. To ensure the reproducibility of the method, both legs were extended and the feet were maintained on a support in an internal rotation of 35 degrees. The region of interest of the lumbar spine from the whole body scan was positioned around the mid-third part of the tibia. Area, BMC, and BMD values were significantly higher in athletes compared with those of controls. The intra- and interobserver variability of the image analysis were 0.38% and 1.01%, respectively. For BMD measurements, the short-term (4 scans/d) and mid-term (4 scans/mo) reproducibility were 1.33% and 1.94%, respectively. DXA is a suitable tool to evaluate densitometric measurements at the mid-third part of the tibia and the influence of physical activity on that bone site.


Assuntos
Absorciometria de Fóton , Esportes/fisiologia , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Adulto , Densidade Óssea , Exercício Físico/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
17.
J R Soc Interface ; 16(151): 20180911, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958180

RESUMO

With ageing and various diseases, the vascular pore volume fraction (porosity) in cortical bone increases, and the morphology of the pore network is altered. Cortical bone elasticity is known to decrease with increasing porosity, but the effect of the microstructure is largely unknown, while it has been thoroughly studied for trabecular bone. Also, popular micromechanical models have disregarded several micro-architectural features, idealizing pores as cylinders aligned with the axis of the diaphysis. The aim of this paper is to quantify the relative effects on cortical bone anisotropic elasticity of porosity and other descriptors of the pore network micro-architecture associated with pore number, size and shape. The five stiffness constants of bone assumed to be a transversely isotropic material were measured with resonant ultrasound spectroscopy in 55 specimens from the femoral diaphysis of 29 donors. The pore network, imaged with synchrotron radiation X-ray micro-computed tomography, was used to derive the pore descriptors and to build a homogenization model using the fast Fourier transform (FFT) method. The model was calibrated using experimental elasticity. A detailed analysis of the computed effective elasticity revealed in particular that porosity explains most of the variations of the five stiffness constants and that the effects of other micro-architectural features are small compared to usual experimental errors. We also have evidence that modelling the pore network as an ensemble of cylinders yields biased elasticity values compared to predictions based on the real micro-architecture. The FFT homogenization method is shown to be particularly efficient to model cortical bone.


Assuntos
Matriz Óssea , Osso Cortical , Elasticidade/fisiologia , Modelos Biológicos , Anisotropia , Matriz Óssea/metabolismo , Matriz Óssea/ultraestrutura , Osso Cortical/metabolismo , Osso Cortical/ultraestrutura , Humanos , Porosidade
18.
Arch Osteoporos ; 14(1): 21, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30783777

RESUMO

The estimation of cortical thickness (Ct.Th) and porosity (Ct.Po) at the tibia using axial transmission ultrasound was successfully validated ex vivo against site-matched micro-computed tomography. The assessment of cortical parameters based on full-spectrum guided-wave analysis might improve the prediction of bone fractures in a cost-effective and radiation-free manner. PURPOSE: Cortical thickness (Ct.Th) and porosity (Ct.Po) are key parameters for the identification of patients with fragile bones. The main objective of this ex vivo study was to validate the measurement of Ct.Po and Ct.Th at the tibia using a non-ionizing, low-cost, and portable 500-kHz ultrasound axial transmission system. Additional ultrasonic velocities and site-matched reference parameters were included in the study to broaden the analysis. METHODS: Guided waves were successfully measured ex vivo in 17 human tibiae using a novel 500-kHz bi-directional axial transmission probe. Theoretical dispersion curves of a transverse isotropic free plate model with invariant matrix stiffness were fitted to the experimental dispersion curves in order to estimate Ct.Th and Ct.Po. In addition, the velocities of the first arriving signal (υFAS) and A0 mode (υA0) were measured. Reference Ct.Po, Ct.Th, and vBMD were obtained from site-matched micro-computed tomography. Scanning acoustic microscopy (SAM) provided the acoustic impedance of the axial cortical bone matrix. RESULTS: The best predictions of Ct.Po (R2 = 0.83, RMSE = 2.2%) and Ct.Th (R2 = 0.92, RMSE = 0.2 mm, one outlier excluded) were obtained from the plate model. The second best predictors of Ct.Po and Ct.Th were vBMD (R2 = 0.77, RMSE = 2.6%) and υA0 (R2 = 0.28, RMSE = 0.67 mm), respectively. CONCLUSIONS: Ct.Th and Ct.Po were accurately predicted at the human tibia ex vivo using a transverse isotropic free plate model with invariant matrix stiffness. The model-based predictions were not further enhanced when we accounted for variations in axial tissue stiffness as reflected by the acoustic impedance from SAM.


Assuntos
Doenças Ósseas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Tíbia/diagnóstico por imagem , Ultrassonografia/estatística & dados numéricos , Microtomografia por Raio-X/estatística & dados numéricos , Testes de Impedância Acústica , Densidade Óssea , Osso Cortical/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Porosidade , Valor Preditivo dos Testes , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/fisiopatologia , Ultrassonografia/métodos , Microtomografia por Raio-X/métodos
19.
J Orthop Res ; 36(9): 2380-2391, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663495

RESUMO

One of the most important characteristic of knee osteoarthritis (OA) is the joint space (JS) width narrowing. Measurements are usually performed on two dimensional (2D) X-rays. We propose and validate a new method to assess the 3D joint space at the medial knee compartment using high resolution peripheral computed tomography images. A semi-automated method was developed to obtain a distance 3D map between femur an tibia with the following parameters: volume, minimum, maximum, mean, standard deviation, median, asymmetry, and entropy. We analyzed 71 knee specimens (mean age: 85 years), radiographs were performed for the Kellgren Lawrence (KL) score grading. In a subgroup of 41 specimens, the histopathological Outerbridge and meniscal classifications were performed and then cores were harvested from the tibial plateau in three different positions (posterior, central, and peripheral) and imaged at 10 µm of resolution to measure the cartilage thickness. Minimum, maximum, mean, and median were statistically lower and entropy higher between knee specimens classified as KL = 0 and KL = 3-4. Gr1 and 2 were statistically different from Gr3-4 for minimum, asymmetry, entropy using the Outerbridge classification and Gr1 was statistically different from Gr3-4 using the meniscal classification. Asymmetry, minimum, mean, median and entropy were significantly correlated with cartilage thickness. Parameters extracted from a 3D map of the medial joint space indicate local variations of JS and are related to local measurements of tibial cartilage thickness, and could be consequently useful to identify early OA. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:2380-2391, 2018.


Assuntos
Imageamento Tridimensional/métodos , Articulação do Joelho/anatomia & histologia , Menisco/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Cadáver , Cartilagem , Cartilagem Articular/patologia , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Joelho/anatomia & histologia , Joelho/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Reconhecimento Automatizado de Padrão , Tíbia/cirurgia
20.
PLoS One ; 12(8): e0181956, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797093

RESUMO

OBJECTIVE: Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. METHODS: We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, µm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, µm), spacing (Tb.Sp, µm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). RESULTS: Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. CONCLUSIONS: The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture resembles that of highly loaded areas.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Cartilagem Hialina/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Menisco/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Suporte de Carga , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA