Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(24): 39449-39460, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809309

RESUMO

Frequency-based cavity mode-dispersion spectroscopy (CMDS), previously applied for Doppler-limited molecular spectroscopy, is now employed for the first time for saturation spectroscopy. Comparison with two intensity-based, cavity-enhanced absorption spectroscopy techniques, i.e. cavity mode-width spectroscopy (CMWS) and the well-established cavity ring-down spectroscopy (CRDS), shows the predominance of the CMDS. The method enables measurements in broader pressure range and shows high immunity of the Lamb dip position to the incomplete model of saturated cavity mode shape. Frequencies of transitions from the second overtone of CO are determined with standard uncertainty below 500 Hz which corresponds to relative uncertainty below 3 × 10-12. The pressure shift of the Lamb dips, which has not been detected for these transitions in available literature data, is observed.

2.
Opt Express ; 27(15): 21810-21821, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510251

RESUMO

A spectroscopic method free from systematic errors is desired for many challenging applications of gas detection. Although existing cavity-enhanced techniques exhibit very high precision, their accuracy strongly depends on propagation of the light amplitude through an optical system and its detection. Here, we demonstrate that the frequency-based molecular dispersion spectroscopy, involving sub-Hz-level precision in frequency measurements of optical cavity resonances, leads to sub-per-mille accuracy and a wide dynamic range, both previously unattainable by any other spectroscopic technique. The method offers great sensitivity of 5×10-11 cm-1, high speed, limited only by the fundamental response time of the cavity, and traceability of both axes of the spectrum to the primary frequency standard. All these features are necessary for convenient realization of comprehensive molecular spectroscopy from Doppler up to collisional regime without changing the spectroscopic method and modification of the experimental setup. Moreover, the presented approach does not require linear, high-bandwidth nor phase-sensitive detectors and can be directly implemented in existing cavity-enhanced spectrometers utilizing either continuous-wave or coherent broadband radiation. We experimentally prove the predominance of frequency-based spectroscopy over intensity-based one. Our results motivate replacement of intensity-based absorption spectroscopy with a pure frequency-based dispersion one in applications where the highest accuracy is required.

3.
Sci Rep ; 12(1): 2377, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149716

RESUMO

Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without significantly compromising spectral resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane-an important greenhouse gas and breath biomarker. When combined with broadband frequency combs, the high sensitivity, spectral resolution and accuracy of our DC-CRDS technique shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.

4.
Sci Rep ; 9(1): 8206, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160670

RESUMO

Optical frequency comb spectrometers open up new avenues of investigation into molecular structure and dynamics thanks to their accuracy, sensitivity and broadband, high-speed operation. We combine broadband direct frequency comb spectroscopy with a dispersive spectrometer providing single-spectrum acquisition time of a few tens of milliseconds and high spectral resolution. We interleave a few tens of such comb-resolved spectra to obtain profiles of 14-kHz wide cavity resonances and determine their positions with precision of a few hertz. To the best of our knowledge, these are the most precise and highest resolution spectral measurements performed with a broadband spectrometer, either comb-based or non-comb-based. This result pushes the limits of broadband comb-based spectroscopy to Hz-level regime. As a demonstration of these capabilities, we perform simultaneous cavity-enhanced measurements of molecular absorption and dispersion, deriving the gas spectra from cavity mode widths and positions. Such approach is particularly important for gas metrology and was made possible by the Hz-level resolution of the system. The presented method should be especially applicable to monitoring of chemical kinetics in, for example, plasma discharges or measurements of narrow resonances in cold atoms and molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA