RESUMO
Hydathodes are small organs found on the leaf margins of vascular plants which release excess xylem sap through a process called guttation. While previous studies have hinted at additional functions of hydathode in metabolite transport or auxin metabolism, experimental support is limited. We conducted comprehensive transcriptomic, metabolomic and physiological analyses of mature Arabidopsis hydathodes. This study identified 1460 genes differentially expressed in hydathodes compared to leaf blades, indicating higher expression of most genes associated with auxin metabolism, metabolite transport, stress response, DNA, RNA or microRNA processes, plant cell wall dynamics and wax metabolism. Notably, we observed differential expression of genes encoding auxin-related transcriptional regulators, biosynthetic processes, transport and vacuolar storage supported by the measured accumulation of free and conjugated auxin in hydathodes. We also showed that 78% of the total content of 52 xylem metabolites was removed from guttation fluid at hydathodes. We demonstrate that NRT2.1 and PHT1;4 transporters capture nitrate and inorganic phosphate in guttation fluid, respectively, thus limiting the loss of nutrients during this process. Our transcriptomic and metabolomic analyses unveil an organ with its specific physiological and biological identity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Folhas de Planta , Xilema , Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Xilema/metabolismo , Xilema/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transcriptoma , Transporte Biológico , Fosfatos/metabolismo , Nitratos/metabolismo , Nutrientes/metabolismoRESUMO
DNA methylation is an epigenetic mark that fine-tunes gene expression, notably by negatively or positively regulating transcription factor (TF)-DNA binding. In plants, DNA methylation has primarily been shown to inhibit TF-DNA binding. However, little is known about the underlying mechanisms. Here, we show that DNA methylation decreases the binding of several Arabidopsis (Arabidopsis thaliana) WRKY TFs to their genomic regions and their binding sites in vitro. We also provide evidence that DNA methylation at a single cytosine located in a functional core W-box motif repels DNA binding of AtWRKY40 in vitro. Using structural modelling, we further demonstrate that this cytosine interacts through van der Waals contacts with the conserved tyrosine of WRKY-DNA binding domains. Importantly, our model predicts steric hindrance when a 5-methyl group is present on this specific cytosine, thereby likely preventing tight binding of WRKY-DNA binding domains. Finally, because the WRKY motif and the residues involved in DNA contacts are conserved across Arabidopsis and rice (Oryza sativa) WRKY TFs, we propose that this methylation-dependent WRKY-DNA binding inhibitory mechanism could be widespread across plant species.
Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Sequência de Aminoácidos , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we demonstrate that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a transposable element (TE)-derived repeat embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.