RESUMO
We report a measurement of exclusive J/ψ and ψ(2s) photoproduction in Au+Au ultraperipheral collisions at sqrt[s_{NN}]=200 GeV using the STAR detector. For the first time, (i) the ψ(2s) photoproduction in midrapidity at the Relativistic Heavy-Ion Collider has been experimentally measured; (ii) nuclear suppression factors are measured for both the coherent and incoherent J/ψ production. At average photon-nucleon center-of-mass energy of 25.0 GeV, the coherent and incoherent J/ψ cross sections of Au nuclei are found to be 71±10% and 36±7%, respectively, of that of free protons. The stronger suppression observed in the incoherent production provides a new experimental handle to study the initial-state parton density in heavy nuclei. Data are compared with theoretical models quantitatively.
RESUMO
We investigate the magnetic interlayer coupling and domain structure of ultra-thin ferromagnetic (FM) cobalt (Co) layers embedded between a graphene (G) layer and a platinum (Pt) layer on a silicon carbide (SiC) substrate (G/Co/Pt on SiC). Experimentally, a combination of x-ray photoemission electron microscopy with x-ray magnetic circular dichroism has been carried out at the Co L-edge. Furthermore, structural and chemical properties of the system have been investigated using low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS).In situLEED patterns revealed the crystalline structure of each layer within the system. Moreover, XPS confirmed the presence of quasi-freestanding graphene, the absence of cobalt silicide, and the appearance of two silicon carbide surface components due to Pt intercalation. Thus, the Pt-layer effectively functions as a diffusion barrier. The magnetic structure of the system was unaffected by the substrate's step structure. Furthermore, numerous vortices and anti-vortices were found in all samples, distributed all over the surfaces, indicating Dzyaloshinskii-Moriya interaction. Only regions with a locally increased Co-layer thickness showed no vortices. Moreover, unlike in similar systems, the magnetization was predominantly in-plane, so no perpendicular magnetic anisotropy was found.
RESUMO
In this work, the electromigration dispersion (EMD) due to the charged electrolytes in microchannels is considered without using the thin electrical double layer assumption. The electrokinetic flow and transport of ions are actuated within a rectangular micro-/nanochannel having a negative surface charge density under the influence of an external electric field. Due to the local variation of the conductivity and the nonvalidity of the electroneutrality condition, the local electric field varies as a function of the solute concentration, wall surface charge density, valency, and Debye layer length. The resulting electrokinetic flow due to the external electric field drives the fluid along with the charged species, where the Taylor-Aris dispersion separates the solutes into their different constituents. The local concentration dependence of the electric field leads to the formation of concentration profiles that are slightly asymmetric with respect to the standard Gaussian distribution. Including a finite Debye layer thickness has an effect on the advection of the species as well as the diffusion of the species. It is found that in cases where Debye layers are thicker, the species advects faster within the microchannel. This might give valuable insights into the nature of the EMD. Our model aims to predict the evolution of ionic concentration at all positions within the channel. A study of the higher-order statistics in skewness and kurtosis has also been conducted to obtain a better understanding of the idealized model consisting of a buffer solution.
RESUMO
The study aimed to assess the impact of feeding Bengal gram residual forage-based pelleted Total Mixed Ration (TMR) with varying concentrate (C) to roughage (R) ratios on feed intake, nutrient utilization, growth, and carcass characteristics in Barbari kids. Sixteen weaned male Barbari kids (av. age, 233 ± 11 days; weight, 13.86 ± 0.76 kg) were divided into two groups (T1 and T2), each receiving different pelleted diets (TMR) with distinct concentrate to roughage ratios (T1 with 60:40; T2 with 40:60). The kids were fed for 133 days, and a digestion trial was conducted at the end of the study. After completion, all kids were slaughtered. Although, kids under T1 consumed higher (P < 0.001) amount of dry matter, and crude protein compared to T2, which was due to a higher concentrate to roughage ratio in T1. But, the average daily body weight gain (ADG) of finisher kids was 88.53, and 79.83 g/d/kid in T1 and T2, respectively; however, the difference was non-significant. Digestibility of organic matter, crude protein, and total carbohydrate was also greater in T1 compared to T2. Total digestible nutrients intake was higher (P < 0.001) in T1; similarly intake of digestible energy, and metabolizable energy were significantly increased (P < 0.01) in T1 compared to T2. Concentrations of volatile fatty acids and NH3-nitrogen were also enhanced (P < 0.05) in T1 compared to T2. We observed similar carcass weight, and dressing percentage in both groups, and carcass composition remained unaffected. The pelleted diet containing greater ratio of concentrate: roughage (60:40) had no additional benefits in terms of ADG, and carcass traits in finisher kids. Therefore, it may be concluded that the Bengal gram residual forage-based pelleted TMR diet containing C40: R60 (TDN 57.13%, DCP 7.64%, ME 9.11MJ/kg feed) is suitable for optimizing growth performance with desirable carcass traits, and meat composition in finisher Barbari kids reared under the intensive system.
Assuntos
Fibras na Dieta , Nutrientes , Masculino , Animais , Fenótipo , Sorogrupo , Ingestão de AlimentosRESUMO
The elliptic (v_{2}) and triangular (v_{3}) azimuthal anisotropy coefficients in central ^{3}He+Au, d+Au, and p+Au collisions at sqrt[s_{NN}]=200 GeV are measured as a function of transverse momentum (p_{T}) at midrapidity (|η|<0.9), via the azimuthal angular correlation between two particles both at |η|<0.9. While the v_{2}(p_{T}) values depend on the colliding systems, the v_{3}(p_{T}) values are system independent within the uncertainties, suggesting an influence on eccentricity from subnucleonic fluctuations in these small-sized systems. These results also provide stringent constraints for the hydrodynamic modeling of these systems.
Assuntos
Hidrodinâmica , Masculino , Humanos , Anisotropia , Movimento (Física)RESUMO
This corrects the article DOI: 10.1103/PhysRevLett.126.162301.
RESUMO
The polarization of Λ and Λ[over ¯] hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sqrt[s_{NN}]=200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild p_{T} dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and p_{T} dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
RESUMO
We report the triton (t) production in midrapidity (|y|<0.5) Au+Au collisions at sqrt[s_{NN}]=7.7-200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider. The nuclear compound yield ratio (N_{t}×N_{p}/N_{d}^{2}), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity (dN_{ch}/dη) and follows a scaling behavior. The dN_{ch}/dη dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3σ and 3.4σ, respectively, giving a combined significance of 4.1σ. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller p_{T} acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.
RESUMO
The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π^{0}s produced at forward pseudorapidities (2.6<η<4.0) in p+p, p+Al, and p+Au collisions at a center-of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back π^{0} pairs in p+Al and p+Au collisions compared to the p+p data. The observed suppression of back-to-back pairs as a function of transverse momentum suggests nonlinear gluon dynamics arising at high parton densities. The larger suppression found in p+Au relative to p+Al collisions exhibits a dependence of the saturation scale Q_{s}^{2} on the mass number A. A linear scaling of the suppression with A^{1/3} is observed with a slope of -0.09±0.01.
RESUMO
Elliptic flow measurements from two-, four-, and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at sqrt[s_{NN}]=193 GeV, Cu+Au at sqrt[s_{NN}]=200 GeV and Au+Au spanning the range sqrt[s_{NN}]=11.5-200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and trento model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.
RESUMO
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sqrt[s_{NN}]=3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (p_{T}) within -0.5
RESUMO
We report precision measurements of hypernuclei _{Λ}^{3}H and _{Λ}^{4}H lifetimes obtained from Au+Au collisions at sqrt[s_{NN}]=3.0 GeV and 7.2 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider, and the first measurement of _{Λ}^{3}H and _{Λ}^{4}H midrapidity yields in Au+Au collisions at sqrt[s_{NN}]=3.0 GeV. _{Λ}^{3}H and _{Λ}^{4}H, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be 221±15(stat)±19(syst) ps for _{Λ}^{3}H and 218±6(stat)±13(syst) ps for _{Λ}^{4}H. The p_{T}-integrated yields of _{Λ}^{3}H and _{Λ}^{4}H are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of _{Λ}^{4}H is different for 0%-10% and 10%-50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the _{Λ}^{3}H yield well, while underestimating the _{Λ}^{4}H yield. Transport models, combining baryonic mean-field and coalescence (jam) or utilizing dynamical cluster formation via baryonic interactions (phqmd) for light nuclei and hypernuclei production, approximately describe the measured _{Λ}^{3}H and _{Λ}^{4}H yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.
RESUMO
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultraperipheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sqrt[s_{NN}]=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer -t is measured. In addition, data with a neutron tagged in the deuteron-going zero-degree calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the color glass condensate saturation model and the leading twist approximation nuclear shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup process, which provides insights into the nuclear gluonic structure.
RESUMO
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in midcentral (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.
RESUMO
Twenty-four weaned male Barbari kids (age 144.67 days; weight 11.99 ± 0.49 kg) were divided equally into three groups (T1, T2, and T3) in order to investigate the effect of supplementation of phytogenic feed additives (herbal mixture) in the complete pelleted feed on growth performance, in vitro rumen fermentation and carcass quality in kids reared under stall-fed condition. Treatment groups were as follows: T1, concentrate mixture (40%) plus arhar (Cajanus cajan) straw (60%) in total mixed ration (TMR) form fed ad libitum; T2, T1 diet in complete feed pellets form fed ad libitum; and T3, T1 diet in complete feed pellets form supplemented with herbal mixture (Tulsi/Haldi/Amla/Arni; ratio 1:1:1:1 on DM basis) at 0.5% in complete feed fed ad libitum. The experimental kids in each group were allowed for feeding for 8 months by following the respective feeding schedule. Rumen fermentation pattern under in vitro system was also studied using the same three diets as substrates. After 240 days of feeding, all goats were slaughtered following standard protocol. Total body weight gain (kg) and average daily gain (ADG, g/day/kid) were 18.57, 22.26, and 23.06 kg, and 79.91, 101.49, and 100.18 g in T1, T2, and T3 treatments, respectively. Pelleting of TMR (T2) and supplementation of herbal mixture in pelleted feed (T3) increased (P < 0.001) average daily weight gain in Barbari kids compared to T1 (TMR). Average dry matter intake (DMI, g/day/kid) during growth trial was greater (P < 0.05) in T3 (1079.17) than T1 (849.76) and T2 (968.76). Feed conversion efficiency was 8.92, 9.48, and 8.68% in T1, T2, and T3, respectively. The difference was statistically non-significant among the treatments. Supplementation of herbal mixture in the complete pelleted substrate had adjunct effect on improvement of TCA-precipitable-N and total VFAs in the incubation medium under in vitro system. Carcass weight (kg) tended to increase in finisher kids under T2 (16.58) and T3 (16.70) than T1 (14.61), but the variation was non-significant. The dressing percentage was similar among three treatments. Similarly, the muscle protein, fat, and cholesterol contents remained unaffected by different dietary treatments. Therefore, it may be concluded that densification of feeds in the form of complete pelleted feed and further supplementation with potential phytogenic feed additives increased total DMI and ADG and tended to enhance meat production potential in finisher Barbari kids without changing the meat chemical composition.
Assuntos
Ração Animal , Dieta , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Fermentação , Masculino , DesmameRESUMO
Nonmonotonic variation with collision energy (sqrt[s_{NN}]) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the quantum chromodynamics critical point. We report the first evidence of a nonmonotonic variation in the kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of sqrt[s_{NN}] with 3.1 σ significance for head-on (central) gold-on-gold (Au+Au) collisions measured solenoidal tracker at Relativistic Heavy Ion Collider. Data in noncentral Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of sqrt[s_{NN}].
RESUMO
The Breit-Wheeler process which produces matter and antimatter from photon collisions is experimentally investigated through the observation of 6085 exclusive electron-positron pairs in ultraperipheral Au+Au collisions at sqrt[s_{NN}]=200 GeV. The measurements reveal a large fourth-order angular modulation of cos4ΔÏ=(16.8±2.5)% and smooth invariant mass distribution absent of vector mesons (Ï, ω, and ρ) at the experimental limit of ≤0.2% of the observed yields. The differential cross section as a function of e^{+}e^{-} pair transverse momentum P_{â¥} peaks at low value with sqrt[⟨P_{â¥}^{2}⟩]=38.1±0.9 MeV and displays a significant centrality dependence. These features are consistent with QED calculations for the collision of linearly polarized photons quantized from the extremely strong electromagnetic fields generated by the highly charged Au nuclei at ultrarelativistic speed. The experimental results have implications for vacuum birefringence and for mapping the magnetic field which is important for emergent QCD phenomena.
RESUMO
Global polarization of Ξ and Ω hyperons has been measured for the first time in Au+Au collisions at sqrt[s_{NN}]=200 GeV. The measurements of the Ξ^{-} and Ξ[over ¯]^{+} hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay ΞâΛ+π, as well as by measuring the polarization of the daughter Λ hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over Ξ^{-} and Ξ[over ¯]^{+}, is measured to be ⟨P_{Ξ}⟩=0.47±0.10(stat)±0.23(syst)% for the collision centrality 20%-80%. The ⟨P_{Ξ}⟩ is found to be slightly larger than the inclusive Λ polarization and in reasonable agreement with a multiphase transport model. The ⟨P_{Ξ}⟩ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of Ω, ⟨P_{Ω}⟩=1.11±0.87(stat)±1.97(syst)% was obtained by measuring the polarization of daughter Λ in the decay ΩâΛ+K, assuming the polarization transfer factor C_{ΩΛ}=1.
RESUMO
According to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region µ_{B}≤T_{c}. In this range the ratio, C_{6}/C_{2}, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C_{6}/C_{2} from 27, 54.4, and 200 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). The dependence on collision centrality and kinematic acceptance in (p_{T}, y) are analyzed. While for 27 and 54.4 GeV collisions the C_{6}/C_{2} values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the C_{6}/C_{2} ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high-energy nuclear collisions at top RHIC energy.
RESUMO
We report on the first measurement of charm-strange meson D_{s}^{±} production at midrapidity in Au+Au collisions at sqrt[s_{NN}]=200 GeV from the STAR experiment. The yield ratio between strange (D_{s}^{±}) and nonstrange (D^{0}) open-charm mesons is presented and compared to model calculations. A significant enhancement, relative to a pythia simulation of p+p collisions, is observed in the D_{s}^{±}/D^{0} yield ratio in Au+Au collisions over a large range of collision centralities. Model calculations incorporating abundant strange-quark production in the quark-gluon plasma and coalescence hadronization qualitatively reproduce the data. The transverse-momentum integrated yield ratio of D_{s}^{±}/D^{0} at midrapidity is consistent with a prediction from a statistical hadronization model with the parameters constrained by the yields of light and strange hadrons measured at the same collision energy. These results suggest that the coalescence of charm quarks with strange quarks in the quark-gluon plasma plays an important role in D_{s}^{±}-meson production in heavy-ion collisions.