Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(5): 2009-2015, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36799489

RESUMO

Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.

2.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038197

RESUMO

Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.

3.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37218703

RESUMO

X-ray scattering has been used to characterize the columnar packing and the π stacking in a glass-forming discotic liquid crystal. In the equilibrium liquid state, the intensities of the scattering peaks for π stacking and columnar packing are proportional to each other, indicating concurrent development of the two orders. Upon cooling into the glassy state, the π-π distance shows a kinetic arrest with a change in the thermal expansion coefficient (TEC) from 321 to 109 ppm/K, while the intercolumnar spacing exhibits a constant TEC of 113 ppm/K. By changing the cooling rate, it is possible to prepare glasses with a wide range of columnar and π stacking orders, including zero order. For each glass, the columnar order and the π stacking order correspond to a much hotter liquid than its enthalpy and π-π distance, with the difference between the two internal (fictive) temperatures exceeding 100 K. By comparison with the relaxation map obtained by dielectric spectroscopy, we find that the δ mode (disk tumbling within a column) controls the columnar order and the π stacking order trapped in the glass, while the α mode (disk spinning about its axis) controls the enthalpy and the π-π spacing. Our finding is relevant for controlling the different structural features of a molecular glass to optimize its properties.

4.
ACS Nano ; 15(7): 11309-11316, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34152730

RESUMO

The dynamics near the surface of glasses can be much faster than in the bulk. We studied the surface dynamics of a Pt-based metallic glass using electron correlation microscopy with sub-nanometer resolution. Our studies show an ∼20 K suppression of the glass transition temperature at the surface. The enhancement in surface dynamics is suppressed by coating the metallic glass with a thin layer of amorphous carbon. Parallel molecular dynamics simulations on Ni80P20 show a similar temperature suppression of the surface glass transition temperature and that the enhanced surface dynamics are arrested by a capping layer that chemically binds to the glass surface. Mobility in the near-surface region occurs via atomic caging and hopping, with a strong correlation between slow dynamics and high cage-breaking barriers and stringlike cooperative motion. Surface and bulk dynamics collapse together as a function of temperature rescaled by their respective glass transition temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA