Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809043

RESUMO

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Assuntos
Antibacterianos , Baías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Baías/microbiologia , Antibacterianos/farmacologia , Estudos Longitudinais , Maryland , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Vibrioses/microbiologia , Humanos
2.
Environ Res ; 220: 115205, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592812

RESUMO

While an increasing number of studies have evaluated tobacco microbiomes, comparative microbiome analyses across diverse tobacco products are non-existent. Moreover, to our knowledge, no previous studies have characterized the metabolically-active (live) fraction of tobacco bacterial communities and compared them across products. To address these knowledge gaps, we compared bacterial communities across four commercial products (cigarettes, little cigars, cigarillos and hookah) and one research cigarette product. After total DNA extraction (n = 414) from all samples, the V3V4 region of the 16S rRNA gene was sequenced on the Illumina HiSeq platform. To identify metabolically-active bacterial communities within these products, we applied a coupled 5-bromo-2'-deoxyuridine labeling and sequencing approach to a subset of samples (n = 56). Each tobacco product was characterized by its signature microbiome, along with a shared microbiome across all tobacco products consisting of Pseudomonas aeruginosa, P. putida, P. alcaligenes, Bacillus subtilis, and Klebsiella pneumoniae. Comparing across products (using Linear discriminant analysis Effect Size (LEfSe)), a significantly higher (p < 0.05) relative abundance of Klebsiella and Acinetobacter was observed in commercial cigarettes, while a higher relative abundance of Pseudomonas and Pantoea was observed in research cigarettes. Methylorubrum and Paenibacillus were higher in hookah, and Brevibacillus, Lactobacillus, Bacillus, Lysinibacillus, and Staphylococcus were higher in little cigars and cigarillos. Across all products, the majority of the metabolically-active bacterial communities belonged to the genus Pseudomonas, followed by several genera within the Firmicutes phylum (Bacillus, Terribacillus, and Oceanobacillus). Identification of some metabolically-active pathogens such as Bacillus cereus and Haemophilus parainfluenzae in commercial products is of concern because of the potential for these microorganisms to be transferred to users' respiratory tracts via mainstream smoke. Future work is warranted to evaluate the potential impact of these tobacco bacterial communities on users' oral and lung microbiomes, which play such an important role on the spectrum from health to disease.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Produtos do Tabaco , Nicotiana , Fumar , RNA Ribossômico 16S/genética , Produtos do Tabaco/análise , Bactérias/genética , Microbiota/genética , Pseudomonas
3.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194536

RESUMO

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Assuntos
Antibacterianos , Desinfetantes , Estados Unidos , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Estudos Longitudinais , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Água , Irrigação Agrícola , Águas Residuárias , Genes Bacterianos
4.
Environ Res ; 212(Pt D): 113462, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580667

RESUMO

Multiple studies have demonstrated that cigarettes harbor bacterial pathogens. Yet, to our knowledge, there are no published data to date on whether or not these microorganisms can be aerosolized and transmitted to the respiratory tract of users. To address this knowledge gap, we characterized cigarette bacterial communities and evaluated whether or not they could be aerosolized in mainstream smoke. Filtered and unfiltered cigarettes were tested. Non-smoked tobacco leaf, enriched non-smoked tobacco leaf extract and enriched mainstream smoke extract samples (n = 144) were incubated on trypticase soy agar, and resulting bacterial colonies were sequenced. Total DNA was also extracted, followed by PCR amplification of the 16S rRNA gene, sequencing and analysis using UCHIME, QIIME and R packages. The predominant bacterial genera cultured from the mainstream smoke of unfiltered cigarettes were Bacillus, Terribacillus, Paenibacillus and Desulfotomaculum. Culturable bacteria were not recovered from the smoke of filtered products. However, sequencing data demonstrated no significant differences in bacterial community diversity in the smoke of filtered versus unfiltered cigarettes, suggesting that other non-culturable bacteria may be aerosolized in mainstream smoke as well. Our study provides novel evidence that tobacco-associated bacterial communities are viable, can be aerosolized in mainstream smoke, and could potentially be transferred to the oral cavity and respiratory tract of smokers.


Assuntos
Fumaça , Produtos do Tabaco , Bactérias/genética , RNA Ribossômico 16S/genética , Fumaça/análise , Nicotiana
5.
Appl Microbiol Biotechnol ; 106(17): 5785-5795, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927334

RESUMO

Young adults are increasingly using non-cigarette products, such as hookahs, since they are perceived as healthier alternatives to cigarette smoking. However, hookah users are exposed to not only carcinogenic compounds but also microorganisms that may play an active role in the development of both infectious and chronic diseases among users. Nevertheless, existing hookah research in this area has focused only on microorganisms that may be transferred to users through the smoking apparatus and not on bacterial communities associated with hookah tobacco. To address this knowledge gap, we conducted time-series experiments on commercially available hookah brands (Al Fakher (flavors: two apple, mint, and watermelon) and Fumari (flavors: white gummy bear, ambrosia, and mint chocolate chill)) stored under three different temperature and relative humidity conditions over 14 days. To characterize bacterial communities, the total DNA was extracted on days 0, 5, 9, and 14, PCR-amplified for the V3V4 region of the bacterial 16S rRNA gene, sequenced on the Illumina HiSeq platform, and analyzed using R. Diversity (alpha and beta) analyses revealed that the microbiotas of Fumari and Al Fakher products differed significantly and that flavor had a significant effect on the hookah microbiota. Overall, Pseudomonas, Bacillus, Sphingomonas, and Methylobacterium were the predominant bacterial taxa across all products. Additionally, we observed compositional differences between hookah brands across the 14-day incubation. These data suggest that the bacterial communities of hookah tobacco are diverse and differ across brands and flavors, which may have critical implications regarding exposures to specific bacteria among hookah users. KEY POINTS: • Commercial hookah products harbor diverse bacterial communities. • Brands and flavors impact the diversity of these communities. • Research on their viability and transmission to users' respiratory tracts is needed.


Assuntos
Cachimbos de Água , Produtos do Tabaco , Bactérias , Humanos , RNA Ribossômico 16S , Nicotiana , Adulto Jovem
6.
Appl Microbiol Biotechnol ; 105(10): 4241-4253, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977338

RESUMO

Previous studies have characterized bacterial communities in menthol versus non-menthol cigarettes. However, these studies evaluated commercial cigarettes, for which levels of chemical constituents are largely unknown, and therefore, could not assess the impact of varying nicotine and menthol concentrations on tobacco bacterial communities. To address this knowledge gap, we performed time-series experiments using SPECTRUM research cigarettes with varying nicotine and menthol levels. Cigarettes were incubated under three storage conditions for 14 days. Cigarette tobacco was then sub-sampled (n = 288), DNA extracted, and subjected to PCR amplification of the V3V4 region of the 16S rRNA gene, followed by Illumina HiSeq sequencing. Sequences were analyzed using QIIME and R. Incubation under varying conditions did not affect bacterial diversity. However, significant differences in bacterial communities were observed across varying nicotine concentrations in menthol and non-menthol products. For example, Pseudomonas spp. was negatively correlated with nicotine concentrations in menthol cigarettes. A significantly higher relative abundance of P. veronii and P. viridiflava was observed in menthols versus non-menthols, while a significantly higher relative abundance of Bacillus foraminis and B. coagulans was found in non-menthols versus menthols. Additional bacteria (e.g., Staphylococcus spp., Jeotgalicoccus psychrophilus, and B. flexus) significantly changed in relative abundance between days 0 and 14. Our findings demonstrate that nicotine and menthol levels have a significant impact on the relative abundance of potential bacterial pathogens present in cigarettes. Future work is needed to demonstrate whether these tobacco-associated bacteria could be transferred to users while smoking, ultimately contributing to adverse respiratory impacts. KEY POINTS: • Varying nicotine levels changes bacterial composition of research cigarettes. • Mentholation affects the tobacco bacterial microbiome. • SPECTRUM research cigarettes are dominated by Pseudomonas and Bacillus.


Assuntos
Nicotina , Produtos do Tabaco , Bacillus , Bactérias/genética , RNA Ribossômico 16S/genética , Staphylococcaceae
7.
Appl Microbiol Biotechnol ; 105(7): 2633-2645, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33704513

RESUMO

Tobacco smoking is still the leading cause of preventable diseases and death in the USA and throughout the globe. Under Section 904(a)(3) of the US Federal Food, Drug, and Cosmetic Act, tobacco manufacturing companies need to report on quantities of harmful and potentially harmful constituents (HPHCs) in all tobacco products. While the extensive HPHC list of 2012 includes 93 chemicals, which are categorized as carcinogenic, respiratory, cardiovascular, or reproductive toxicants or addictive compounds, it fails to include microorganisms (bacteria and fungi) that have been shown to contribute to adverse health outcomes among tobacco users. Nevertheless, over the last 50 years, researchers have studied microorganisms in a variety of tobacco products using both culture-based and culture-independent techniques. In this mini-review, we provide an overview of this body of research, detailing the bacterial and fungal microbiomes residing in commercial tobacco products. Overall, studies have characterized over 89 unique bacterial genera and 19 fungal genera in cigarettes, cigars, cigarillos, hookah, and smokeless tobacco. The most predominant bacterial genera are Bacillus, Pseudomonas, and Staphylococcus. Fungal genera identified have included Aspergillus, Penicillium, Mucor, Alternaria, Cladosporium, Streptomyces, and Candida, to name a few. While some of the identified microorganisms are known human pathogens, others are potential opportunistic pathogens. Given the vast array of microorganisms that are present across diverse types of tobacco products, future research should be focused on the viability of these microorganisms, as well as their ability to transfer to the user's respiratory tract, potentially contributing to adverse health outcomes. KEY POINTS: • Commercial tobacco products harbor diverse bacterial and fungal communities. • Some of these microorganisms are known or opportunistic human pathogens. • Research on their viability and transmission to users' respiratory tracts is needed.


Assuntos
Microbiota , Produtos do Tabaco , Tabaco sem Fumaça , Bactérias , Humanos , Nicotiana
8.
Environ Res ; 188: 109777, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599390

RESUMO

Treating and reusing greywater for agricultural irrigation is becoming increasingly prevalent in water-scarce regions such as the Middle East. However, the potential for antibiotic-resistant bacteria to be introduced into food systems or the environment via greywater reuse is a potential area of concern. It is known that off-grid treated greywater often has elevated levels of bacteria, however, little is known regarding the prevalence of antibiotic-resistant bacteria in this water source. To address this knowledge gap, samples (n = 61) of off-grid, household greywater (influent), treated greywater effluent, and irrigation pond water were collected between October 2017 and June 2018 from four farms in the West Bank, Palestinian Territories. Samples were tested for pH, turbidity, dissolved oxygen, electrical conductivity, and oxidation reduction potential. Standard membrane filtration was used to enumerate presumptive Escherichia coli, and isolates (n = 88) were purified, confirmed using 16S rRNA sequencing, and subjected to antimicrobial susceptibility testing using microbroth dilution. The majority of influent (76.5%) and effluent (70.6%) samples had detectable presumptive E. coli. Interestingly, the majority of the isolates were confirmed as Klebsiella sp. (n = 37), followed by E. coli (n = 32), and the remainder were classified as other Enterobacteriaceae (n = 19). A higher percentage of effluent isolates were fully susceptible to all tested antibiotics when compared to influent isolates (28.6% vs 18.6%). Resistance was most commonly observed against ampicillin (69.3% of all isolates), trimethoprim-sulfamethoxazole (11.4%), tetracycline (9.1%), and cefazolin (7.9%), and 7.9% of isolates were observed to be multidrug-resistant. While most water quality parameters were within Israeli and Palestinian wastewater reuse requirements, E. coli levels in effluent violated available standards. These findings suggest that, despite observed decreases in bacteria and an overall decrease in isolates expressing antibiotic resistance from influent to effluent, off-grid greywater treatment systems are still a potential source of both susceptible and antibiotic-resistant bacteria in the agricultural environment.


Assuntos
Escherichia coli , Klebsiella , Irrigação Agrícola , Antibacterianos/farmacologia , Árabes , Escherichia coli/genética , Humanos , Oriente Médio , Lagoas , RNA Ribossômico 16S , Águas Residuárias
9.
Appl Microbiol Biotechnol ; 104(14): 6287-6297, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32448997

RESUMO

Bacterial communities are integral constituents of tobacco products. They originate from tobacco plants and are acquired during manufacturing processes, where they play a role in the production of tobacco-specific nitrosamines. In addition, tobacco bacterial constituents may play an important role in the development of infectious and chronic diseases among users. Nevertheless, tobacco bacterial communities have been largely unexplored, and the influence of tobacco flavor additives such as menthol (a natural antimicrobial) on tobacco bacterial communities is unclear. To bridge this knowledge gap, time series experiments including 5 mentholated and non-mentholated commercially available cigarettes-Marlboro red (non-menthol), Marlboro menthol, Newport menthol box, Newport menthol gold, and Newport non-menthol-were conducted. Each brand was stored under three different temperature and relative humidity conditions. To characterize bacterial communities, total DNA was extracted on days 0 and 14. Resulting DNA was purified and subjected to PCR of the V3V4 region of the 16S rRNA gene, followed by sequencing on the Illumina HiSeq platform and analysis using the QIIME, phyloseq, metagenomeSeq, and DESeq software packages. Ordination analyses showed that the bacterial community composition of Marlboro cigarettes was different from that of Newport cigarettes. Additionally, bacterial profiles significantly differed between mentholated and non-mentholated Newports. Independently of storage conditions, tobacco brands were dominated by Proteobacteria, with the most dominant bacterial genera being Pseudomonas, unclassified Enterobacteriaceae, Bacillus, Erwinia, Sphingomonas, Acinetobacter, Agrobacterium, Staphylococcus, and Terribacillus. These data suggest that the bacterial communities of tobacco products differ across brands and that mentholation of tobacco can alter bacterial community composition of select brands. KEY POINTS: • Bacterial composition differed between the two brands of cigarettes. • Mentholation impacts cigarette microbiota. • Pseudomonas and Bacillus dominated the commercial cigarettes. Graphical abstract.


Assuntos
Bactérias/efeitos dos fármacos , Aromatizantes/farmacologia , Mentol/farmacologia , Microbiota/efeitos dos fármacos , Produtos do Tabaco/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Aromatizantes/análise , Mentol/análise , RNA Ribossômico 16S/genética , Nicotiana/microbiologia , Produtos do Tabaco/análise
10.
Sci Rep ; 14(1): 10394, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710815

RESUMO

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Assuntos
Disbiose , Microbiota , Boca , RNA Ribossômico 16S , Tabaco sem Fumaça , Humanos , Tabaco sem Fumaça/efeitos adversos , Masculino , Feminino , Disbiose/microbiologia , Adulto , RNA Ribossômico 16S/genética , Boca/microbiologia , Saliva/microbiologia , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fumantes , Adulto Jovem , Fumar Cigarros/efeitos adversos , Mucosa Bucal/microbiologia
11.
Heliyon ; 9(7): e17783, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37455971

RESUMO

Both SARS-CoV-2 and smoking tobacco adversely impact the respiratory system, damaging the airways and impairing lung function. While some studies have identified a positive association between smoking and increased susceptibility to COVID-19 infections, a few papers have concluded that smokers may be protected against such infections. Given these contradictory findings, there is an ongoing debate in the scientific community about whether or not smokers have a stronger predisposition towards COVID-19 infections. Through this mini-review, we aimed to study the relationship between tobacco smoking and COVID-19 infections by conducting a comprehensive literature search of peer reviewed articles that reported on the effects of smoking on COVID-19 susceptibility and were published globally over the past two years (January 2020-April 2022). Our search identified 31 articles that demonstrated a positive or strong relationship between smoking and COVID-19, while 13 articles had contrasting results. Additionally, we evaluated mechanistic studies suggesting that, among smokers, angiotensin-converting enzyme-2 genes are upregulated, facilitating easier binding of SARS-CoV-2, thereby increasing the risk of COVID-19 infection. In conclusion, the majority of studies in this area to date provide evidence of a strong relationship between smoking and COVID-19 infection; however, the strength of this association may vary across the smoking behaviors of differing populations. Future work could involve a meta-analysis of studies focusing on susceptibility to COVID-19 infection for different types of tobacco product smokers, which would result in a more comprehensive understanding of the predisposition of smokers towards COVID-19 infections.

12.
Sci Total Environ ; 843: 156976, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768032

RESUMO

Climate change is stressing irrigation water sources, necessitating the evaluation of alternative waters such as harvested rainwater to determine if they meet water quality and food safety standards. We collected water, soil, and produce samples between June and August 2019 from two vegetable rain garden (VRG) sites in Frederick, Maryland that harvest rainwater using a first flush system, and deliver this water to produce through subsurface irrigation. The raised VRG beds include layers of gravel, sand, and soil that act as filters. We recorded the average surface soil moisture in each bed as well as antecedent precipitation. All water (n = 29), soil (n = 55), and produce (n = 57) samples were tested for generic E. coli using standard membrane filtration, and water samples were also tested for Salmonella spp. and Listeria monocytogenes by selective enrichment. No Salmonella spp. or L. monocytogenes isolates were detected in any water samples throughout the study period. Average E. coli levels from all harvested rainwater samples at both sites (1.2 and 24.4 CFU/100 mL) were well below the Good Agricultural Practices food safety guidelines. Only 7 % (3/44) of produce samples from beds irrigated with harvested rainwater were positive for E. coli. E. coli levels in soil samples were positively associated with average surface soil moisture (r2 = 0.13, p = 0.007). Additionally, E. coli presence in water samples was marginally associated with a shorter length of antecedent dry period (fewer days since preceding rainfall) (p = 0.058). Our results suggest that harvested rainwater collected through a first flush system and applied to produce through subsurface irrigation meets current food safety standards. Soil moisture monitoring could further reduce E. coli contamination risks from harvested rainwater-irrigated produce. First flush and subsurface irrigation systems could help mitigate climate change-related water challenges while protecting food safety and security.


Assuntos
Escherichia coli , Solo , Irrigação Agrícola , Agricultura , Inocuidade dos Alimentos , Microbiologia da Água
13.
Environ Microbiome ; 16(1): 13, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158117

RESUMO

Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.

14.
PLoS One ; 16(1): e0245243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444404

RESUMO

The etiology of vulvar lichen sclerosus (LS) remains unclear; however, alterations in cutaneous and gut microbiota may be contributing to the pathogenesis of this inflammatory condition. To explore this hypothesis, we conducted a pilot case-control study, obtaining dermal swab and stool samples from prepubertal girls with vulvar LS (n = 5), girls with nonspecific vulvovaginitis (n = 5), and healthy controls (n = 3). Samples (n = 56) were subjected to total DNA extractions. Resulting DNA was purified, subjected to PCR (targeting the V3V4 region of the 16S rRNA gene), sequenced, and analyzed using QIIME, MetagenomeSeq, and DESeq2 software packages. Our findings showed that there were significant differences in the cutaneous and gut microbiotas of girls with LS compared to controls. On the skin, girls with LS had a statistically significantly higher relative abundance of Porphyromonas spp., Parvimonas spp., Peptoniphilus spp., Prevotella spp., Dialister spp., and Peptostreptococcus spp., but a lower relative abundance of Cornyebacterium compared to the control group. In the gut samples, girls with LS had a significantly higher relative abundance of Dialister spp., Clostridiales spp., Paraprevotella spp., Escherichia coli, Bifidobacterium adolescentis, and Akkermansia muciniphila, and a lower relative abundance of Roseburia faecis and Ruminococcus bromii compared to controls. These results suggest a potential association between cutaneous and gut dysbiosis and pediatric vulvar LS. Future studies involving larger samples sizes are warranted to further evaluate this association.


Assuntos
Microbioma Gastrointestinal , Líquen Escleroso e Atrófico/microbiologia , Menarca/fisiologia , Pele/microbiologia , Biodiversidade , Estudos de Casos e Controles , Criança , Feminino , Humanos , Filogenia , Projetos Piloto
15.
Water Res ; 184: 116185, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726735

RESUMO

Understanding the complex microbiota of agricultural irrigation water is vital to multiple sectors of sustainable agriculture and public health. To date, microbiome characterization methods have provided comprehensive profiles of aquatic microbiotas, but have not described which taxa are likely metabolically-active. Here, we combined 5­bromo­2'-deoxyuridine (BrdU) labeling with 16S rRNA and shotgun sequencing to identify metabolically-active bacteria in reclaimed and agricultural pond water samples (n = 28) recovered from the Mid-Atlantic United States between March 2017 and January 2018. BrdU-treated samples were significantly less diverse (alpha diversity) compared to non-BrdU-treated samples. The most abundant taxa in the metabolically-active fraction of water samples (BrdU-treated samples) were unclassified Actinobacteria, Flavobacterium spp., Pseudomonas spp. and Aeromonas spp. Interestingly, we also observed that antimicrobial resistance and virulence gene profiles seemed to be more diverse and more abundant in non-BrdU-treated water samples compared to BrdU-treated samples. These findings raise the possibility that these genes may be associated more with relic (inactive) DNA present in the tested water types rather than viable, metabolically-active microorganisms. Our study demonstrates that the coupled use of BrdU labeling and sequencing can enhance understanding of the metabolically-active fraction of bacterial communities in alternative irrigation water sources. Agricultural pond and reclaimed waters are vital to the future of sustainable agriculture, and thus, the full understanding of the pathogenic potential of these waters is important to guide mitigation strategies that ensure appropriate water quality for intended purposes.


Assuntos
Lagoas , Microbiologia da Água , Bromodesoxiuridina , DNA , RNA Ribossômico 16S/genética
16.
Sci Total Environ ; 706: 135395, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846873

RESUMO

Lotic surface water sites (e.g. creeks) are important resources for localized agricultural irrigation. However, there is concern that microbial contaminants within untreated surface water may be transferred onto irrigated soil and crops. To evaluate this issue, water samples were collected between January 2017 and August 2018 from a freshwater creek used to irrigate kale and radish plants on a small farm in the Mid-Atlantic, United States. In addition, on one sampling date, a field survey was conducted in which additional water (creek source and point-of-use) and soil samples were collected to assess the viral and bacterial communities pre- and post- irrigation. All samples were processed for DNA extracts and shotgun sequenced on the Illumina HiSeq platform. The resulting metagenomic libraries were assembled de novo and taxonomic and functional features were assigned at the contig and peptide level. From these data, we observed that Betaproteobacteria (e.g. Variovorax) dominated the water, both at the source and point-of-use, and Alphaproteobacteria (e.g. Streptomyces) dominated both pre- and post-irrigated soil. Additionally, in the creek source water there were variations in the abundance of the dominant bacterial genera and functional annotations associated with seasonal characteristics (e.g. water temperature). Antibiotic resistance genes and virulence factors were also identified in the creek water and soil, with the majority specific to their respective habitat. Moreover, an analysis of clustered regularly interspaced short palindromic repeat (CRISPR) arrays showed the persistence of certain spacers through time in the creek water, as well as specific interactions between creek bacteriophages and their hosts. Overall, these findings provide a more holistic picture of bacterial and viral composition, dynamics, and interactions within a freshwater creek that can be utilized to further our knowledge on its suitability and safety for irrigation.


Assuntos
Metagenoma , Irrigação Agrícola , Bactérias , Água Doce , Mid-Atlantic Region , Microbiologia do Solo
18.
Front Microbiol ; 10: 2371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708882

RESUMO

Despite their potential importance with regard to tobacco-related health outcomes, as well as their hypothesized role in the production of tobacco-specific N-nitrosamines, bacterial constituents of tobacco products lack characterization. Specifically, to our knowledge, there has been no comprehensive characterization of the effects of storage conditions on the bacterial communities associated with little cigars and cigarillos. To address this knowledge gap, we characterized the bacterial community composition of the tobacco and wrapper components of the following four products: Swisher Sweets Original; Swisher Sweets, Sweet Cherry; Cheyenne Cigars Full Flavor 100's; and Cheyenne Menthol Box. Each product was stored under three different conditions of temperature and relative humidity to mimic different user storage conditions: room (20°C 50% RH), refrigerator (5°C 18% RH) and pocket (25°C 30% RH). On days 0, 5, 9 and 14, subsamples were collected, the wrapper and tobacco were separated, and their total DNA was extracted separately and purified. Resulting DNA was then used in PCR assays targeting the V3 V4 region of the bacterial 16S rRNA gene, followed by sequencing using Illumina HiSeq 300bp PE. Resulting sequences were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software package, followed by analyses in R using the Phyloseq and Vegan packages. A single bacterial phylum, Firmicutes, dominated in the wrapper subsamples whereas the tobacco subsamples were dominated by Proteobacteria. Cheyenne Menthol Box (CMB) samples were characterized by significant differential abundances for 23 bacterial operational taxonomic units (OTUs) in tobacco subsamples and 27 OTUs in the wrapper subsamples between day 0 and day 14 under all conditions. OTUs from the genera Acinetobacter and Bacillus significantly increased in the CMB tobacco subsamples, and OTUs from Bacillus, Streptococcus, Lactobacillus, and Enterococcus significantly increased in the CMB wrapper subsamples over time. These initial results suggest that the bacterial communities of little cigars and cigarillos are dynamic over time and varying storage conditions.

19.
PLoS One ; 14(2): e0211705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794551

RESUMO

Despite their potential importance with regard to infectious and chronic diseases among tobacco users, microbial constituents of tobacco products lack characterization. Specifically, to our knowledge, there are no data describing the bacterial diversity of little cigars or cigarillos. To address this knowledge gap, we tested four brands of little cigars and cigarillos. Tobacco and wrapper subsamples (n = 132) were separately subjected to DNA extraction, followed by PCR amplification of the V3V4 hypervariable region of the 16S rRNA gene, and sequencing using Illumina HiSeq. Sequences were analyzed using QIIME and Phyloseq implemented in R. We identified 2,681 operational taxonomic units across all products. Significant differences in alpha and beta diversity were observed between Swisher Sweets and Cheyenne products. Alpha and beta diversity was also significantly different between tobacco and wrapper subsamples within the same product. Beta diversity analyses of only tobacco samples identified no significant differences in the bacterial microbiota of different lots of the same products; however, the microbiota in the wrapper differed significantly across lots for all brands. Overall, Firmicutes were found to dominate in the wrapper, whereas Proteobacteria were most abundant in the tobacco. At the genus level, Bacillus and Lactobacillus dominated in the wrappers, and Staphylococcus and Pseudomonas dominated in the tobacco. Our findings suggest that the bacterial microbiota of little cigars and cigarillos is diverse and differs significantly between the tobacco and the wrapper, and across brands. Future work is necessary to evaluate the potential public health implications of these findings.


Assuntos
Microbiota , Nicotiana/microbiologia , Produtos do Tabaco/microbiologia , Bactérias/genética , Microbiota/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
20.
Sci Total Environ ; 666: 461-471, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802661

RESUMO

The impact of microbially contaminated irrigation water on risks to produce safety and public health is a complex issue that is not well understood. This study tracked fecal indicators, pathogenic bacteria, and total bacterial communities from a creek water irrigation source to irrigated produce to assess the impact of irrigation events on soil and produce-associated microbiota. Kale and radishes were drip-irrigated using Mid-Atlantic creek water in October 2017. Plant and soil samples were collected immediately before and after irrigation, and for 3 consecutive days thereafter. All samples (n = 134), including irrigation water, were tested for generic Escherichia coli and total coliforms (TC) using standard membrane filtration or direct plating, and for Salmonella enterica and Listeria monocytogenes by selective enrichment. DNA extracted from all samples was PCR-amplified for the V3-V4 region of the 16S rRNA gene for bacterial community profiling. In soil, TC levels were significantly higher immediately and 3 days post-irrigation compared to pre-irrigation (p < 0.01). E. coli levels in soil increased after irrigation, but the difference was not significant (p = 0.31), and die-off was not observed. No E. coli were detected on kale leaves. TC increased over the study period on radish roots (p < 0.01) but not kale leaves (p = 0.43). Although target pathogens were detected in irrigation water, S. enterica was detected from only one post-irrigation kale sample and L. monocytogenes was not detected in the field. The 16S rRNA gene sequencing data revealed differences in bacterial community structure and composition across sample types and showed that radish soil and root surface bacterial communities were more strongly influenced by irrigation compared to kale samples. This study provides insights into the impact of irrigation water on fresh produce microbiota, revealing that, although irrigation did influence crop-associated microbiota (especially below ground) in the field, bacterial pathogens were not likely transferred to the crop.


Assuntos
Bactérias/isolamento & purificação , Brassica/microbiologia , Fezes/microbiologia , Microbiologia de Alimentos , Raphanus/microbiologia , Microbiologia do Solo , Microbiologia da Água , Irrigação Agrícola , Brassica/crescimento & desenvolvimento , Produtos Agrícolas , Escherichia coli/isolamento & purificação , Maryland , Microbiota , Raphanus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA