Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 188(2): 293-298, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28090641

RESUMO

Mouse collagen-induced arthritis (CIA) is the most commonly used animal model to investigate underlying pathogenesis of autoimmune arthritis and to demonstrate the therapeutic efficacy of novel drugs in autoimmune arthritis. The conventional read-outs of CIA are clinical score and histopathology, which have several limitations, including (i) subjected to observer bias; and (ii) longitudinal therapeutic efficacy of a new drug cannot be determined. Thus, a robust, non-invasive, in-vivo drug screening tool is currently an unmet need. Here we have assessed the utility of 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG) as an in-vivo screening tool for anti-inflammatory drugs using the mouse CIA model. The radiotracer 18 F-FDG and a PET scanner were employed to monitor CIA disease activity before and after murine anti-tumour necrosis factor (TNF)-α antibody (CNTO5048) therapy in the mouse CIA model. Radiotracer concentration was derived from PET images for individual limb joints and on a per-limb basis, and Spearman's correlation coefficient (ρ) was determined with clinical score and histology of the affected limbs. CNTO5048 improved arthritis efficiently, as evidenced by clinical score and histopathology. PET showed an increased uptake of 18 F-FDG with the progression of the disease and a significant decrease in the post-treatment group. 18 F-FDG uptake patterns showed a strong correlation with clinical score (ρ = 0·71, P < 0·05) and histopathology (ρ = 0·76, P < 0·05). This study demonstrates the potential of 18 F-FDG PET as a tool for in-vivo drug screening for inflammatory arthritis and to monitor the therapeutic effects in a longitudinal setting.


Assuntos
Anti-Inflamatórios/imunologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/tratamento farmacológico , Animais , Anti-Inflamatórios/análise , Colágeno/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Fluordesoxiglucose F18 , Articulações/diagnóstico por imagem , Articulações/imunologia , Articulações/patologia , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos DBA , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
2.
Bone Rep ; 10: 100210, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31193542

RESUMO

OBJECTIVE: To determine the effect of an antibody to vascular endothelial growth factor (VEGF) on bone blood flow, bone strength, and bone mass in the young adult mouse. METHODS: Ten-week-old male BALB/cJ mice were body weight-randomized into either a rodent anti-VEGF monoclonal antibody (anti-VEGF, B20-4.1.1; 5 mg/kg 2×/wk.; n = 12) group or a vehicle (VEH; n = 12) group. After 42 days, mice were evaluated for bone blood flow at the distal femur by 18F-NaF-PET/CT and then necropsied. Samples from trabecular and cortical bone regions were evaluated for bone strength by mechanical testing, bone mass by peripheral quantitative computed tomography (pQCT), and micoarchitecture (MicroCT). Hydration of the whole femur was studied by proton nuclear magnetic resonance relaxometry (1H NMR). RESULTS: Distal femur blood flow was 43% lower in anti-VEGF mice than in VEH mice (p = 0.009). Ultimate load in the lumbar vertebral body was 25% lower in anti-VEGF than in VEH mice (p = 0.013). Bone mineral density (BMD) in the trabecular region of the proximal humeral metaphysis by pQCT, and bone volume fraction and volumetric BMD by MicroCT were the same in the two groups. Volume fraction of bound water (BW) of the whole femur was 14% lower in anti-VEGF than in VEH mice (p = 0.003). Finally, BW, but not cortical tissue mineral density, helped section modulus explain the variance in the ultimate moment experienced by the femur in three-point bending. CONCLUSION: Anti-VEGF caused low bone blood flow and bone strength in trabecular bone regions without influencing BMD and microarchitecture. Low bone strength was also associated with low bone hydration. These data suggest that bone blood flow is a novel bone property that affects bone quality.

3.
J Chromatogr Sci ; 50(8): 680-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22593253

RESUMO

A simple, specific, accurate and precise stability-indicating reversed-phase high-performance liquid chromatographic method was developed for simultaneous estimation of olmesartan medoxomile (OLME), amlodipine besylate (AMLO) and hydrochlorothiazide (HCTZ) in tablet dosage form. The method was developed using an RP C18 base deactivated silica column (250 × 4.6 mm, 5 µm) with a mobile phase consisting of triethylamine (pH 3.0) adjusted with orthophosphoric acid (A) and acetonitrile (B), with a timed gradient program of T/%B: 0/30, 7/70, 8/30, 10/30 with a flow rate of 1.4 mL/min. Ultraviolet detection was used at 236 nm. The retention times for OLME, AMLO and HCTZ were found to be 6.72, 4.28 and 2.30, respectively. The proposed method was validated for precision, accuracy, linearity, range, robustness, ruggedness and force degradation study. The calibration curves of OLME, AMLO and HCTZ were linear over the range of 50-150, 12.5-37.5 and 31-93 µg/mL, respectively. The method was found to be sensitive. The limits of detection of OLME, AMLO and HCTZ were determined 0.19, 0.16 and 0.22 µg/mL and limits of quantification of OLME, AMLO and HCTZ were determined 0.57, 0.49 and 0.66, respectively. Forced degradation study was performed according to International Conference on Harmonization guidelines.


Assuntos
Anlodipino/análise , Cromatografia Líquida de Alta Pressão/métodos , Hidroclorotiazida/análise , Imidazóis/análise , Tetrazóis/análise , Anlodipino/química , Cromatografia de Fase Reversa/métodos , Estabilidade de Medicamentos , Hidroclorotiazida/química , Imidazóis/química , Modelos Lineares , Olmesartana Medoxomila , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Comprimidos/análise , Comprimidos/química , Tetrazóis/química
4.
Proc IEEE Int Symp Biomed Imaging ; 2009: 366-369, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21072317

RESUMO

Estimation of internal mouse anatomy is required for quantitative bioluminescence or fluorescence tomography. However, only surface range data can be recovered from all-optical systems. These data are at times sparse or incomplete. We present a method for fitting an elastically deformable mouse atlas to surface topographic range data acquired by an optical system. In this method, we first match the postures of a deformable atlas and the range data of the mouse being imaged. This is achieved by aligning manually identified landmarks. We then minimize the asymmetric L(2) pseudo-distance between the surface of the deformable atlas and the surface topography range data. Once this registration is accomplished, the internal anatomy of the atlas is transformed to the coordinate system of the range data using elastic energy minimization. We evaluated our method by using it to register a digital mouse atlas to a surface model produced from a manually labeled CT mouse data set. Dice coefficents indicated excellent agreement in the brain and heart, with fair agreement in the kidneys and bladder. We also present example results produced using our method to align the digital mouse atlas to surface range data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA