Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Nanobiotechnology ; 16(1): 31, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587743

RESUMO

BACKGROUND: Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes. RESULTS: Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction. CONCLUSIONS: This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nanotubos de Carbono/química , Salmonella typhimurium/efeitos dos fármacos , Prata/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Embrião de Galinha , Composição de Medicamentos , Desenvolvimento Embrionário/efeitos dos fármacos , Microbiologia de Alimentos , Ontologia Genética , Humanos , Medições Luminescentes , Anotação de Sequência Molecular , Nanocompostos/química , Polietilenoglicóis/química , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
BMC Microbiol ; 16(1): 192, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549081

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are a class of antimicrobial agents with broad-spectrum activities. Several reports indicate that cationic AMPs bind to the negatively charged bacterial membrane causing membrane depolarization and damage. However, membrane depolarization and damage may be insufficient to elicit cell death, thereby suggesting that other mechanism(s) of action could be involved in this phenomenon. In this study, we investigated the antimicrobial activity of a novel antimicrobial peptide, TP359, against two strains of Pseudomonas aeruginosa, as well as its possible mechanisms of action. RESULTS: TP359 proved to be bactericidal against P. aeruginosa as confirmed by the reduced bacteria counts, membrane damage and cytoplasmic membrane depolarization. In addition, it was non-toxic to mouse J774 macrophages and human lung A549 epithelial cells. Electron microscopy analysis showed TP359 bactericidal effects by structural changes of the bacteria from viable rod-shaped cells to those with cell membrane damages, proceeding into the efflux of cytoplasmic contents and emergence of ghost cells. Gene expression analysis on the effects of TP359 on outer membrane biogenesis genes underscored marked down-regulation, particularly of oprF, which encodes a major structural and outer membrane porin (OprF) in both strains studied, indicating that the peptide may cause deregulation of outer membrane genes and reduced structural stability which could lead to cell death. CONCLUSION: Our data shows that TP359 has potent antimicrobial activity against P aeruginosa. The correlation between membrane damage, depolarization and reduced expression of outer membrane biogenesis genes, particularly oprF may suggest the bactericidal mechanism of action of the TP359 peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Células A549 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Porinas/efeitos dos fármacos , Porinas/genética , Pseudomonas aeruginosa/metabolismo
3.
J Nanobiotechnology ; 14(1): 58, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412259

RESUMO

BACKGROUND: Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. METHODS: The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. RESULTS: FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5 µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). CONCLUSION: In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Nanotubos de Carbono/química , Prata/química , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Citratos/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento
4.
Int J Mol Sci ; 17(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27898014

RESUMO

Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.


Assuntos
Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Polímeros/química , Pele , Alicerces Teciduais/química , Cicatrização/fisiologia
5.
J Nanobiotechnology ; 13: 23, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25888864

RESUMO

BACKGROUND: Resistance of food borne pathogens such as Salmonella to existing antibiotics is of grave concern. Silver coated single walled carbon nanotubes (SWCNTs-Ag) have broad-spectrum antibacterial activity and may be a good treatment alternative. However, toxicity to human cells due to their physico-chemical properties is a serious public health concern. Although pegylation is commonly used to reduce metal nanoparticle toxicity, SWCNTs-Ag have not been pegylated as yet, and the effect of pegylation of SWCNTs-Ag on their anti-bacterial activity and cell cytotoxicity remains to be studied. Further, there are no molecular studies on the anti-bacterial mechanism of SWCNTs-Ag or their functionalized nanocomposites. MATERIALS AND METHODS: In this study we created novel pegylated SWCNTS-Ag (pSWCNTs-Ag), and employed 3 eukaryotic cell lines to evaluate their cytotoxicity as compared to plain SWCNTS-Ag. Simultaneously, we evaluated their antibacterial activity on Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by the MIC and growth curve assays. In order to understand the possible mechanisms of action of both SWCNTs-Ag and pSWCNTs-Ag, we used electron microscopy (EM) and molecular studies (qRT-PCR). RESULTS: pSWCNTs-Ag inhibited Salmonella Typhimurium at 62.5 µg/mL, while remaining non-toxic to human cells. By comparison, plain SWCNTs-Ag were toxic to human cells at 62.5 µg/mL. EM analysis revealed that bacteria internalized either of these nanocomposites after the outer cell membranes were damaged, resulting in cell lysis or expulsion of cytoplasmic contents, leaving empty ghosts. The expression of genes regulating the membrane associated metabolic transporter system (artP, dppA, and livJ), amino acid biosynthesis (trp and argC) and outer membrane integrity (ompF) protiens, was significantly down regulated in Salmonella treated with both pSWCNTs-Ag and SWCNTs-Ag. Although EM analysis of bacteria treated with either SWCNTs-Ag or pSWCNTs-Ag revealed relatively similar morphological changes, the expression of genes regulating the normal physiological processes of bacteria (ybeF), quorum sensing (sdiA), outer membrane structure (safC), invasion (ychP) and virulence (safC, ychP, sseA and sseG) were exclusively down regulated several fold in pSWCNTs-Ag treated bacteria. CONCLUSIONS: Altogether, the present data shows that our novel pSWCNTs-Ag are non-toxic to human cells at their bactericidal concentration, as compared to plain SWCNTS-Ag. Therefore, pSWCNTs-Ag may be safe alternative antimicrobials to treat foodborne pathogens.


Assuntos
Antibacterianos/farmacologia , Nanotubos de Carbono , Salmonella typhimurium/efeitos dos fármacos , Prata/química , Animais , Antibacterianos/química , Linhagem Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/química , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade/métodos
6.
Avian Dis ; 58(1): 25-33, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24758109

RESUMO

The present study describes an experimental infection model for avian pathogenic Escherichia coli (APEC)-induced egg peritonitis in layer chickens. First, a pilot study which consisted of two separate experiments was carried out to compare two routes of inoculations of APEC to induce peritonitis and to examine if the presence of egg yolk in the peritoneum would facilitate APEC-induced peritonitis. This study showed that the presence of egg yolk in the peritoneum facilitated the development of egg peritonitis when the APEC was inoculated via the intra-uterine (IU) route. Based on the results of the pilot study, 56-wk-old white leghorn hens were divided into two groups of five chickens, Group G (inoculated with E. coli APECO78 strain) and Group H (control). Both groups were inoculated with 2-3 ml of egg yolk via the intraperitoneal route (IP). Subsequently, hens in Group H were inoculated with only egg yolk whereas the hens in Group G were inoculated with 1 x 10(9) colony-forming units of APECO78 bacteria via the IU route. Parameters such as mortality, clinical signs (anorexia, depression, and egg production efficiency), gross lesion scores, bacterial loads in internal organs, and histopathology of ovary and oviduct were assessed to evaluate the success of the infection model. Group G showed 40% acute mortality, severe depression, and anorexia with markedly reduced egg production and developed peritonitis-associated lesions such as accumulation of yellowish caseous fluid in the peritoneum, salpingitis, and oophoritis. Histopathologically, ovarian and oviduct tissues from group G exhibited severe inflammatory changes such as infiltration of mononuclear cells and edema. Group G also showed significant bacterial loads in the peritoneum, ovary, and oviduct. Interestingly, deceased birds from group G had also developed mild perihepatitis and pericarditis with heavy bacterial loads in the internal organs. On the other hand, group H birds did not exhibit any of the clinical signs and remained healthy until the end of the experiment. To summarize, our results demonstrate that IP administration of egg yolk followed by IU inoculation of APECO78 induced peritonitis in laying hens. Experimental infection models are often required to understand the mechanisms of disease pathogenesis. Therefore, the present infection model will aid in the studies of pathogenesis of layer peritonitis caused by APEC and in evaluating vaccine candidates to control the disease.


Assuntos
Galinhas , Gema de Ovo/efeitos adversos , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Peritonite/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Modelos Animais de Doenças , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Feminino , Ovário/microbiologia , Ovário/patologia , Oviductos/microbiologia , Oviductos/patologia , Peritonite/microbiologia , Peritonite/fisiopatologia , Doenças das Aves Domésticas/fisiopatologia
7.
Avian Pathol ; 42(4): 365-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23815619

RESUMO

The present study evaluated the adjuvant effect of live attenuated salmonella organisms expressing the heat-labile toxin of Escherichia coli B subunit (LTB) on the efficacy of an avian pathogenic Escherichia coli (APEC) vaccine. The Asd(+) (aspartate semialdehyde dehydrogenase) plasmid pMMP906 containing the LTB gene was introduced into a Salmonella enterica Typhimurium strain lacking the lon, cpxR and asd genes to generate the adjuvant strain. Live recombinant Salmonella-delivered APEC vaccine candidates were used for this study. The birds were divided into three groups: group A, non-vaccinated controls; group B, immunized with vaccine candidates only; and group C, immunized with vaccine candidates and the LTB strain. The immune responses were measured and the birds were challenged at 21 days of age with a virulent APEC strain. Group C showed a significant increase in plasma IgG and intestinal IgA levels and a significantly higher lymphocyte proliferation response compared with the other groups. Upon challenge with the virulent APEC strain, group C showed effective protection whereas group B did not. We also attempted to optimize the effective dose of the adjuvant. The birds were immunized with the vaccine candidates together with 1×107 or 1×108 colony-forming units of the LTB strain and were subsequently challenged at 3 weeks of age. The 1×107 colony-forming units of the LTB strain showed a greater adjuvant effect with increased levels of serum IgG, intestinal IgA and a potent lymphocyte proliferation response, and yielded higher protection against challenge. Overall, the LTB strain increased the efficacy of the Salmonella -delivered APEC vaccine, indicating that vaccination for APEC along with the LTB strain appears to increase the efficacy for protection against colibacillosis in broiler chickens.


Assuntos
Toxinas Bacterianas/metabolismo , Galinhas , Enterotoxinas/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Vacinas contra Escherichia coli/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Atenuadas/farmacologia , Adjuvantes Imunológicos/metabolismo , Animais , Aspartato-Semialdeído Desidrogenase/genética , Peso Corporal , Ensaio de Imunoadsorção Enzimática/veterinária , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/metabolismo , Imunoglobulina A Secretora/sangue , Linfotoxina-beta/genética , Plasmídeos/genética , Salmonella typhimurium , Vacinas Atenuadas/metabolismo
8.
Avian Dis ; 57(1): 88-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23678735

RESUMO

An attenuated Salmonella (deltalon, deltacpxR, and deltaasdA16) delivery system containing the genes encoding P-fimbriae (papa and papG), aerobactin receptor (iutA), and CS31A surface antigen (clpG) of avian pathogenic Escherichia coli (APEC) was constructed, and its potential as a vaccine candidate against APEC infection in chickens was evaluated. The birds were divided into three groups designated group A (nonvaccinated control), group B (given a single immunization), and group C (administered prime and boost immunizations). Prime and booster vaccinations with the constructions were administered to 1-day-old and 14-day-old birds, respectively. Immune responses were measured postimmunization, and the birds were challenged via an intra-air sac route with a virulent APEC strain at the second, third, and fourth weeks of age. Group B birds were partially protected against the challenge and showed increased levels of plasma immunoglobulin (Ig)G, mucosal IgA antibodies, and lymphocyte proliferation. Group C birds showed greater protection against the challenge, with significantly stronger immune responses compared with the birds in the other groups. Overall, our data suggest that the Salmonella delivery system with recombinant constructs is capable of inducing robust immune responses and induces effective protection against colibacillosis caused by APEC.


Assuntos
Galinhas , Infecções por Escherichia coli/veterinária , Vacinas contra Escherichia coli/imunologia , Escherichia coli/imunologia , Doenças das Aves Domésticas/imunologia , Salmonella typhimurium , Animais , Sistemas de Liberação de Medicamentos/veterinária , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/administração & dosagem , Transformação Genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Fatores de Virulência/imunologia
9.
Infect Immun ; 80(4): 1502-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22290147

RESUMO

A new strategy to develop an effective vaccine is essential to control food-borne Salmonella enterica serovar Enteritidis infections. Bacterial ghosts (BGs), which are nonliving, Gram-negative bacterial cell envelopes, are generated by expulsion of the cytoplasmic contents from bacterial cells through controlled expression using the modified cI857/λ P(R)/gene E expression system. In the present study, the pJHL99 lysis plasmid carrying the mutated lambda pR37-cI857 repressor and PhiX174 lysis gene E was constructed and transformed in S. Enteritidis to produce a BG. Temperature induction of the lysis gene cassette at 42°C revealed quantitative killing of S. Enteritidis. The S. Enteritidis ghost was characterized using scanning and transmission electron microscopy to visualize the transmembrane tunnel structure and loss of cytoplasmic materials, respectively. The efficacy of the BG as a vaccine candidate was evaluated in a chicken model using 60 10-day-old chickens, which were divided into four groups (n = 15), A, B, C, and D. Group A was designated as the nonimmunized control group, whereas the birds in groups B, C, and D were immunized via the intramuscular, subcutaneous, and oral routes, respectively. The chickens from all immunized groups showed significant increases in plasma IgG and intestinal secretory IgA levels. The lymphocyte proliferation response and CD3(+) CD4(+) and CD3(+) CD8(+) T cell subpopulations were also significantly increased in all immunized groups. The data indicate that both humoral and cell-mediated immune responses are robustly stimulated. Based on an examination of the protection efficacy measured by observations of gross lesions in the organs and bacterial recovery, the candidate vaccine can provide efficient protection against virulent challenge.


Assuntos
Membrana Celular/imunologia , Galinhas , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Vacinas contra Salmonella/imunologia , Salmonella enteritidis/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Vias de Administração de Medicamentos/veterinária , Genes Virais , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Ativação Linfocitária , Plasmídeos , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/genética
10.
Vet Res ; 43: 44, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22620989

RESUMO

In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against FT.


Assuntos
Galinhas , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Vacinas contra Salmonella/imunologia , Salmonella enterica/imunologia , Proteínas Virais/imunologia , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Citometria de Fluxo/veterinária , Imunidade Celular , Imunidade Humoral , Plasmídeos/genética , Reação em Cadeia da Polimerase/veterinária , Vacinas de Produtos Inativados/imunologia
11.
Avian Pathol ; 40(3): 309-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21711190

RESUMO

The safety and efficacy of a live lon-and-cpxR-deleted Salmonella enterica serovar Gallinarum (SG) vaccine candidate (JOL916) was evaluated in young layer chickens. Vaccinated (n=25) and unvaccinated (n=25) groups were organized, respectively, at 1, 2, 3, and 4 weeks of age. One-week-old and 2-week-old chickens were orally inoculated with 2×10(7) colony-forming units of JOL916, and orally challenged with 2 x 10(6) colony-forming units of a wild-type SG strain at the third week post vaccination (w.p.v.). Doses of vaccination and challenge were increased 10-fold for 3-week-old and 4-week-old chickens. SG-antigen-specific peripheral lymphocyte proliferation response and concentrations of plasma IgG and secretary IgA in the intestine were examined at the second w.p.v. Gross lesions of the liver and spleen and recovery of the vaccine strain from the spleen were also examined at the second w.p.v. No evidence of side effects was detected by observation of general condition and body weight gain in all vaccinated groups. No, or very mild, gross lesions in the chickens were observed in the liver and/or spleen after vaccination. Significant cellular immune responses and systemic IgG responses were induced after vaccination in all age groups. Elevation of secretary IgA concentration was significant in the group, vaccinated at the age of 1 week. Depression scores after challenge were significantly lower in the vaccinated groups, as compared with the corresponding control groups. Significant reductions of death rates were observed in all vaccinated groups, as compared with the equivalent unvaccinated groups. Thus, the oral vaccination of young chickens with JOL916 was demonstrated to be safe. Moreover, it offered efficient protection against fowl typhoid.


Assuntos
Galinhas , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Fatores de Virulência/genética , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Deleção de Genes , Genes Bacterianos/imunologia , Imunoglobulina G/sangue , Fígado/patologia , Doenças das Aves Domésticas/microbiologia , Salmonella/genética , Salmonella/imunologia , Salmonella/patogenicidade , Vacinas contra Salmonella/efeitos adversos , Baço/microbiologia , Baço/patologia , Virulência
12.
Avian Dis ; 55(3): 407-12, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22017038

RESUMO

We evaluated a recently developed live vaccine candidate for fowl typhoid (FT)-JOL916, a lon/cpxR mutant of Salmonella Gallinarum (SG)-by comparing its safety and efficacy with that of the well-known rough mutant strain SG9R vaccine in 6-wk-old Hy-Line hens. Forty-five chickens were divided into three groups of 15 chickens each. The chickens were then intramuscularly inoculated with 2 x 10(7) colony-forming units (CFUs) of JOL916 (JOL916 group), 2 x 10(7) CFUs of SG9R (SG9R group), or phosphate-buffered saline (control group). After vaccination, no clinical symptoms were observed in any of the groups. No differences in body weight increase were detected among the three groups postvaccination. A cellular immune response was observed at 2 wk postvaccination (wpv) in the JOL916 group with the peripheral lymphocyte proliferation assay, whereas no response was detected in the SG9R group. Elevation of SG antigen-specific plasma immunoglobulin was observed 2 and 3 wpv in the JOL916 and SG9R vaccine groups, respectively. After virulent challenge on day 25 postvaccination, 0, 1, and 15 chickens in the JOL916 group, SG9R group, and control group, respectively, died by 12 days postchallenge; the death rate of the SG9R vaccine group was statistically similar to that of the JOL916 group. Postmortem examination revealed that the JOL916 vaccine offered more efficient protection than the SG9R vaccine, with significantly decreased hepatic necrotic foci scores, splenic enlargement scores, necrotic foci scores, and recovery of the challenge strain from the spleen. Vaccination with JOL916 appears to be safe and offers better protection than SG9R against FT in chickens.


Assuntos
Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/efeitos adversos , Vacinas contra Salmonella/imunologia , Salmonella/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Proliferação de Células , Galinhas , Contagem de Colônia Microbiana , Feminino , Deleção de Genes , Imunoglobulina G/sangue , Injeções Intramusculares , Fígado/patologia , Linfócitos/imunologia , Doenças das Aves Domésticas/imunologia , Salmonella/genética , Salmonella/crescimento & desenvolvimento , Salmonelose Animal/imunologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Baço/patologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
13.
Avian Dis ; 55(2): 165-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21793429

RESUMO

In seeking to develop a safe fowl typhoid (FT) vaccine, a novel candidate lacking cpxR, lon, and asd Salmonella Gallinarum (SG) genes was constructed with the plasmid-containing araC::P(araBAD)::asd system. A balanced-lethal host-vector system based on the essential bacterial gene for aspartate beta-semialdehyde dehydrogenase (asd) was used to construct the SG mutant strain. A plasmid (p15A ori) with an araC::P(araBAD)::asd cassette was introduced into an auxotrophic mutant to prevent ex vivo survival. The safety, immunity, and protective properties of the SG mutant were evaluated. Inoculation of the mutant at 10(6) colony-forming units (CFU) did not result in recovery in feces and internal organs, whereas inoculation at 10(8) and 10(10) CFU resulted in moderate bacterial recovery from feces and organs. Birds immunized with the mutant were challenged with a virulent SG strain at day 14 postimmunization; significantly reduced mortality and induced plasma immunoglobulin (Ig)G and mucosal IgA responses were noted. Cellular immune responses as evaluated by a peripheral lymphocyte proliferation assay were also significantly induced. The balanced-lethal host-vector system for construction of SG mutants is an effective and improved approach for safe vaccine construction against FT.


Assuntos
Arabinose/química , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella/genética , Salmonella/imunologia , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galinhas , Feminino , Regulação Bacteriana da Expressão Gênica/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Mutação , Doenças das Aves Domésticas/microbiologia , Vacinas contra Salmonella/efeitos adversos , Vacinas Atenuadas/imunologia
14.
Vet Parasitol ; 277: 109009, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31862509

RESUMO

The present study investigated the effects of dietary supplementation with several Bacillus strains on growth performance, intestinal inflammatory and anti-inflammatory cytokines, anti-oxidants and tight junction (TJ) protein mRNA expression in broiler chickens challenged with mixed coccidia infection (oocysts of Eimeria tenella, Eimeria maxima and Eimeria acervulina). Ten different Bacillus strains were screened for their beneficial effects on coccidiosis challenge by measuring relative body weight gain (RBWG), lesion score, and total oocyst count. Three out of ten Bacillus strains were evaluated in depth by measuring RBWG, lesion score, total oocyst count, and the gene expression of proinflammatory (IL-6 and IL-8), anti-inflammatory (IL-10 and TGF-ß), anti-oxidant (SOD1 and HMOX1), and TJ (JAM2 and occludin) proteins. Our results showed that out of the ten different Bacillus strains, chickens fed with three strains, one Bacillus licheniformis and two Bacillus amyloliquefaciens, showed significantly higher RBWG, lower lesion scores (ceca, jejunum, and duodenum), and lower total fecal oocyst counts compared to non-Bacillus-fed control chickens. Post-coccidia challenge, the RBWG for the Bacillus-fed groups were 95-100 % as opposed to the control birds (70 %) at 6 days post infection (dpi) and 10 dpi. Similarly, the lesion scores for three organs were around 0.8-0.9 for the Bacillus-fed groups as opposed to control birds (lesion score range ∼1.4-2). The total oocyst counts were much lower in the Bacillus-fed group (10-20 folds lesser) than the control group. Furthermore, the Bacillus-fed groups showed differential gene expression at 3 dpi in different tissues, such as caecum, jejunum, and duodenum. Bacillus-fed chickens showed significant pro- and anti-inflammatory responses and higher expression of anti-oxidants and TJ proteins in the ceca, duodenum, and jejunum. Overall, our results demonstrated that dietary supplementation with Bacillus strains as direct-fed microbials (DFM) significantly improved the body weight gain after mixed coccidia challenge compared to non-Bacillus-fed and coccidia challenged control group. In conclusion, the results of this study are promising and indicate the many beneficial effects of DFM-supplementation in poultry diets to reduce the negative consequences of enteric diseases and to decrease economic losses imposed by coccidia infection in chickens.


Assuntos
Bacillus , Coccidiose/veterinária , Suplementos Nutricionais , Ração Animal , Animais , Bacillus/fisiologia , Galinhas/crescimento & desenvolvimento , Fezes/parasitologia , Intestinos/parasitologia , Intestinos/fisiologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/terapia
15.
Poult Sci ; 99(2): 772-782, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32036977

RESUMO

Compared with mammals, the functionality of chicken cytokines is not well understood because of the unavailability of immune reagents. Mammalian interleukin (IL)-13 is an important Th2 type cytokine with well-known biological functions through its 2 receptors, IL-13 receptor (IL-13R)-α1 and IL-13Rα2. In the present study, we developed mouse monoclonal antibodies (mAb) against chIL-13 and further investigated their specificity in detecting endogenously produced chIL-13. Upon characterization of mAb using indirect ELISA and Western blot, the capture ELISA was developed for detecting chIL-13. Neutralizing effects were tested by measuring nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in primary chicken monocytes stimulated with chIL-13, lipopolysaccharide (LPS), chIL-13+LPS, or chIL-13+LPS+mAb. In addition, gene expression of chIL-13Rα1, chIL-13Rα2, and TGF-ß1 was tested in chicken monocytes treated with chIL-13 or chIL-13+mAb. Based on indirect ELISA, 5 mAb that detected recombinant chIL-13 were identified, and all of them specifically detected recombinant chIL-13 protein by Western blotting. An optimal signal was obtained with 2 mAb (#9B11 and #10A2) in a pairing assay, and these 2 mAb were used in a capture assay. A neutralization assay further revealed that chIL-13 reduced LPS-stimulated NO production and iNOS expression in monocytes and macrophage cells, and the 2 mAb (#9B11 and #10A2) abrogated these effects. In addition, chIL-13-induced expressions of chIL-13Rα2 and TGF-ß1 were neutralized by the 2 mAb. In summary, the present study showed that chIL-13 may be involved in the alternative activation of primary monocytes in chickens and that chIL-13 signaling may be regulated through chIL-13Rα2 binding and TGF-ß1 secretion. Importantly, the newly developed anti-chIL-13 mAb will serve as valuable immune reagents for future studies on the biological activity of chIL-13 and its receptors.


Assuntos
Anticorpos Monoclonais/biossíntese , Galinhas/imunologia , Interleucina-13/imunologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Interleucina-13/química , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Testes de Neutralização , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Recombinantes/química
16.
Biochem Biophys Res Commun ; 381(4): 513-7, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19233125

RESUMO

The present study investigates the effect of low oxygen concentrations on thapsigargin-induced apoptosis and reactive oxygen species (ROS)-related signaling in articular chondrocytes. Chondrocytes were obtained from normal canine knee cartilage and were treated with different concentrations of thapsigargin for 24h under normoxic (21% oxygen tension) or hypoxic (1% oxygen tension) conditions. The cells treated with thapsigargin under normoxic conditions showed a dose-dependent induction of apoptosis. However, the cellular changes and apoptotic events that occurred following thapsigargin treatment, were completely inhibited by hypoxia, including loss of mitochondrial transmembrane potential (MTP), ROS generation and JNK phosphorylation. Moreover, the cells exposed to hypoxic conditions showed increased expression of the anti-apoptotic proteins xIAP-2 and Bcl-2. We demonstrate that hypoxia inhibited thapsigargin-induced apoptosis in chondrocytes by regulating ROS-related signaling and the expression of anti-apoptotic proteins. We propose that maintaining hypoxic conditions in articular cartilage may be required for the prevention of chondrocyte and cartilage diseases such as arthritis.


Assuntos
Apoptose , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Inibidores Enzimáticos/farmacologia , Oxigênio/metabolismo , Tapsigargina/farmacologia , Animais , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Cães , MAP Quinase Quinase 4/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
17.
Front Immunol ; 10: 2732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824509

RESUMO

Avian coccidiosis is caused by Eimeria, which is an intracellular apicomplexan parasite that invades through the intestinal tract to cause devastating disease. Upon invasion through the intestinal epithelial cells, a strong inflammatory response is induced that results in complete villous destruction, diarrhea, hemorrhage, and in severe cases, death. Since the life cycle of Eimeria parasites is complex and comprises several intra- and extracellular developmental stages, the host immune responses are diverse and complex. Interferon-γ-mediated T helper (Th)1 response was originally considered to be the predominant immune response in avian coccidiosis. However, recent studies on other avian T cell lineages such as Th17 and T regulatory cells have implicated their significant involvement in maintaining gut homeostasis in normal and disease states including coccidiosis. Therefore, there is a need to understand better their role in coccidiosis. This review focuses on research findings concerning the host immune response induced by avian coccidiosis in the context of T cell immunity, including expression of T-cell-related cytokines and surface molecules that determine the phenotype of T lymphocytes.


Assuntos
Doenças das Aves , Aves , Coccidiose , Eimeria/imunologia , Células Th1 , Células Th17 , Animais , Proteínas Aviárias/imunologia , Doenças das Aves/imunologia , Doenças das Aves/patologia , Aves/imunologia , Aves/microbiologia , Coccidiose/imunologia , Coccidiose/patologia , Coccidiose/veterinária , Citocinas/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
18.
J Biomater Appl ; 33(7): 924-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472917

RESUMO

OBJECTIVE: To investigate the toxicity and antibacterial application of antimicrobial peptide-functionalized silver-coated carbon nanotubes against Staphylococcus infection using a full thickness human three-dimensional skin model. MATERIALS AND METHODS: The three-dimensional skin formation on the scaffolds was characterized by electron microscopy and investigation of several skin cell markers by real time-reverse transcriptase polymerase chain reaction. Functionalized silver-coated carbon nanotubes were prepared using carboxylated silver-coated carbon nanotubes with antimicrobial peptides such as TP359, TP226 and TP557. Following the characterization and toxicity evaluation, the antibacterial activity of functionalized silver-coated carbon nanotubes against Staphylococcus aureus was investigated using a bacterial enumeration assay and scanning electron microscopy. For this purpose, a scar on the human three-dimensional skin grown on Alvetex scaffold using keratinocytes and fibroblasts cells was created by taking precaution not to break the scaffold beneath, followed by incubation with 5 µg/mL of functionalized silver-coated carbon nanotubes re-suspended in minimum essential medium for 2 h. Post 2-h incubation, 200 µL of minimum essential medium containing 1 × 104 colony forming units of Staphylococcus aureus were incubated for 2 h. After incubation with bacteria, the colony forming unit/gram (cfu/g) of skin tissue were counted using the plate count assay and the samples were processed for scanning electron microscopy analysis. RESULTS: MTT assay revealed no toxicity of functionalized silver-coated carbon nanotubes to the skin cells such as keratinocytes and fibroblasts at 5 µg/mL with 98% cell viability. The bacterial count increased from 104 to 108 cfu/g in the non-treated skin model, whereas skin treated with functionalized silver-coated carbon nanotubes showed only a small increase from 104 to 105 cfu/g (1000-fold viable cfu difference). Scanning electron microscopy analysis showed the presence of Staphylococcus aureus on the non-treated skin as opposed to the treated skin. CONCLUSION: Thus, our results showed that functionalized silver-coated carbon nanotubes are not only non-toxic, but also help reduce the infection due to their antibacterial activity. These findings will aid in the development of novel antibacterial skin substitutes.


Assuntos
Antibacterianos/farmacologia , Peptídeos/farmacologia , Prata/farmacologia , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Humanos , Nanotubos de Carbono/química , Peptídeos/química , Prata/química , Pele/efeitos dos fármacos , Pele/ultraestrutura
19.
J Vet Med Sci ; 70(6): 537-42, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18628592

RESUMO

TRAIL is a member of the tumor necrosis factor family and engages apoptosis via recruitment and rapid activation of caspase-8. This study investigated the effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a classic uncoupler of oxidative phosphorylation, on TRAIL-induced apoptosis in SNU-638 cells derived from human gastric cancer cells. It was found that treatment with CCCP followed by incubation with TRAIL markedly enhanced apoptosis by 2 fold compared with treatment with TRAIL alone. This effect was accompanied by reduction in mitochondrial transmembrane potential and generation of reactive oxygen species. This sensitization was inhibited by N-acetyl-l-cysteine, which restored the mitochondrial transmembrane potential and reduced reactive oxygen species generation. Treatment with N-acetyl-L-cysteine also inhibited expression of apoptotic proteins such as Bax and Smac and abrogated caspase-8 activation. Moreover, treatment with N-acetyl-L-cysteine prior to induction with TRAIL increased expression of the anti-apoptotic Bcl-2 protein. These data indicate that CCCP enhanced TRAIL-induced apoptosis by dissipation of mitochondrial transmembrane potential and reactive oxygen species, suggesting that treatment with CCCP combined with that with TRAIL can be an efficient method to induce death of tumor cells, particularly cells that are resistant to TRAIL-induced apoptosis.


Assuntos
Apoptose/fisiologia , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Acetilcisteína/farmacologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
20.
Vet Immunol Immunopathol ; 205: 72-82, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30459004

RESUMO

In mammals, alternatively activated macrophages (AAMs) are well-recognized and are produced by stimulation with Th2 cytokines such as interleukin 4 (IL-4) and IL-13. On their mammalian counterparts, AAMs in chickens has neither been reported nor the functionality of chicken IL-4 (chIL-4) has been studied till date. Therefore, present study developed mouse monoclonal antibodies (mAbs) against chIL-4 and used these antibodies to investigate whether chIL-4 induces activation of HD11 chicken macrophage cell line. Upon characterization of mAbs using western blot, immunocytochemistry (ICC), flow cytometry and capture ELISA, activation of HD11 cells was investigated by measuring nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, arginase activity and gene expressions of iNOS, CD80 and CD86 (associated with mammalian M1 phenotype) and chemokine (C-C motif) ligand 17 (ccl17) and mannose receptor C-type1 (MRC1L-A) (as possible chicken M2 markers) in HD11 cells treated with chIL-4, lipopolysaccharide (LPS), chIL-4+LPS, chIL-4+LPS + mAbs. The newly developed mAbs displayed wide applicability in detecting chIL-4 by capture ELISA, ICC and flow cytometry with no cross reactivities with human or mouse IL-4 and other chicken cytokines. Further, our results showed that chIL-4 inhibited NO production by LPS-stimulated HD11 cells and primary monocyte/macrophage cells with reduced iNOS expression and increased arginase activity and, induced robust expression of genes associated with M2 phenotype than M1-related genes. All these effects were neutralized by anti-chIL-4 antibodies. In summary, present study results showed a possible application of anti-chIL-4 mAbs as valuable immune reagents to explore chIL-4 functionality. In addition, our results demonstrated that chIL-4 may override LPS functionality and regulates alternative activation of HD11 cells in chicken via increased arginase activity and expression of M2 associated markers and thus may indicate the possible existence of M1/M2 paradigm in chickens.


Assuntos
Anticorpos Monoclonais/farmacologia , Interleucina-4/farmacologia , Ativação de Macrófagos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Arginase/genética , Arginase/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Linhagem Celular , Galinhas/imunologia , Citocinas/efeitos dos fármacos , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Interleucina-4/imunologia , Lipopolissacarídeos , Camundongos , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA