Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 37(2): 481-492, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29415627

RESUMO

OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS. Communicated by Ramaswamy H. Sarma.


Assuntos
Cisteína Sintase/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Leishmania donovani/enzimologia , Modelos Moleculares , Peptídeos/química , Relação Quantitativa Estrutura-Atividade , Cisteína Sintase/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA