Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(20): 7450-5, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24794528

RESUMO

GABAergic interneuron hypofunction is hypothesized to underlie hippocampal dysfunction in schizophrenia. Here, we use the cyclin D2 knockout (Ccnd2(-/-)) mouse model to test potential links between hippocampal interneuron deficits and psychosis-relevant neurobehavioral phenotypes. Ccnd2(-/-) mice show cortical PV(+) interneuron reductions, prominently in hippocampus, associated with deficits in synaptic inhibition, increased in vivo spike activity of projection neurons, and increased in vivo basal metabolic activity (assessed with fMRI) in hippocampus. Ccnd2(-/-) mice show several neurophysiological and behavioral phenotypes that would be predicted to be produced by hippocampal disinhibition, including increased ventral tegmental area dopamine neuron population activity, behavioral hyperresponsiveness to amphetamine, and impairments in hippocampus-dependent cognition. Remarkably, transplantation of cells from the embryonic medial ganglionic eminence (the major origin of cerebral cortical interneurons) into the adult Ccnd2(-/-) caudoventral hippocampus reverses these psychosis-relevant phenotypes. Surviving neurons from these transplants are 97% GABAergic and widely distributed within the hippocampus. Up to 6 mo after the transplants, in vivo hippocampal metabolic activity is lowered, context-dependent learning and memory is improved, and dopamine neuron activity and the behavioral response to amphetamine are normalized. These findings establish functional links between hippocampal GABA interneuron deficits and psychosis-relevant dopaminergic and cognitive phenotypes, and support a rationale for targeting limbic cortical interneuron function in the prevention and treatment of schizophrenia.


Assuntos
Hipocampo/embriologia , Interneurônios/citologia , Inibição Neural , Transplante de Células-Tronco , Animais , Transtornos Cognitivos/fisiopatologia , Ciclina D2/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Medo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Transtornos Psicóticos/fisiopatologia , Células-Tronco/citologia
2.
Elife ; 62017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28816653

RESUMO

GABAA receptor (GABAAR) pentamers are assembled from a pool of 19 subunits, and variety in subunit combinations diversifies GABAAR functions to tune brain activity. Pentamers with distinct subunit compositions localize differentially at synaptic and non-synaptic sites to mediate phasic and tonic inhibition, respectively. Despite multitudes of theoretical permutations, limited subunit combinations have been identified in the brain. Currently, no molecular model exists for combinatorial GABAAR assembly in vivo. Here, we reveal assembly rules of native GABAAR complexes that explain GABAAR subunit subcellular distributions using mice and Xenopus laevis oocytes. First, α subunits possess intrinsic signals to segregate into distinct pentamers. Second, γ2 is essential for GABAAR assembly with Neuroligin-2 (NL2) and GARLHs, which localize GABAARs at synapses. Third, δ suppresses α6 synaptic localization by preventing assembly with GARLHs/NL2. These findings establish the first molecular model for combinatorial GABAAR assembly in vivo and reveal an assembly pathway regulating GABAAR synaptic localization.


Assuntos
Química Encefálica , Multimerização Proteica , Receptores de GABA-A/metabolismo , Animais , Camundongos , Inibição Neural , Oócitos/química , Ligação Proteica , Transporte Proteico , Xenopus laevis
3.
Psychiatry Res ; 236: 91-97, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26753951

RESUMO

Exposure to adverse life events during pregnancy has been linked to increased risk of schizophrenia spectrum disorders (SSD) in offspring. Nevertheless, much of the previous work inferred maternal stress from severe life events rather than directly assessing maternal reports of stress. The present study aimed to examine maternal reports of stress during pregnancy and risk for offspring SSD. Participants were 95 SSD cases and 206 controls who were offspring from a large birth cohort study that followed pregnant women from 1959 to 1966. During pregnancy interviews, women were asked if anything worrisome had occurred recently. Interviews were qualitatively coded for stress-related themes, including reports of daily life stress, by two independent raters. None of the maternal psychosocial stress themes were significantly associated with increased odds of offspring SSD in analyses of the full sample. However, results indicated a significant daily life stress by infant sex interaction. Maternal daily life stress during pregnancy was associated with significantly increased odds of SSD among male offspring. Findings suggest sex-specific fetal sensitivity to maternal reported daily life stress during pregnancy on risk for SSD, with males appearing to be more vulnerable to the influences of maternal stress during pregnancy.


Assuntos
Família , Efeitos Tardios da Exposição Pré-Natal/psicologia , Esquizofrenia/etiologia , Estresse Psicológico/complicações , Adulto , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Gravidez , Fatores de Risco , Fatores Sexuais , Estresse Psicológico/psicologia , Trabalho
4.
Neuron ; 78(1): 81-93, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23583108

RESUMO

VIDEO ABSTRACT: The hippocampus in schizophrenia is characterized by both hypermetabolism and reduced size. It remains unknown whether these abnormalities are mechanistically linked. Here we addressed this question by using MRI tools that can map hippocampal metabolism and structure in patients and mouse models. In at-risk patients, hypermetabolism was found to begin in CA1 and spread to the subiculum after psychosis onset. CA1 hypermetabolism at baseline predicted hippocampal atrophy, which occurred during progression to psychosis, most prominently in similar regions. Next, we used ketamine to model conditions of acute psychosis in mice. Acute ketamine reproduced a similar regional pattern of hypermetabolism, while repeated exposure shifted the hippocampus to a hypermetabolic basal state with concurrent atrophy and pathology in parvalbumin-expressing interneurons. Parallel in vivo experiments using the glutamate-reducing drug LY379268 and direct measurements of extracellular glutamate showed that glutamate drives both neuroimaging abnormalities. These findings show that hippocampal hypermetabolism leads to atrophy in psychotic disorder and suggest glutamate as a pathogenic driver.


Assuntos
Mapeamento Encefálico , Ácido Glutâmico/metabolismo , Hipocampo/patologia , Transtornos Psicóticos/patologia , Aminoácidos/farmacologia , Animais , Atrofia/induzido quimicamente , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Seguimentos , Lateralidade Funcional/efeitos dos fármacos , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Ketamina/toxicidade , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Psicóticos/etiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA