Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118887, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588910

RESUMO

Groundwater is essential for maintaining ecosystem health and overall well-being as a pivotal resource for plants and animals. The increasing public consciousness of the deterioration of groundwater quality has emphasized the significance of undertaking extended evaluations of groundwater water quality, particularly in regions undergoing substantial hydrological alterations. This study primarily aims to investigate the spatio-temporal variations in groundwater quality and evaluate its suitability for potable purposes in the region of Madhya Pradesh. The study combines the Mann-Kendall (MK) test and Sen's Slope (SS) to analyze the changes in groundwater quality of all 51 districts of Madhya Pradesh, India, utilizing 12 water quality indices using MATLAB. Data was sourced from the Central Ground Water Board (CGWB) in India from the year 2001-2021. The data was then tested for homogeneity at all 1154 sampling stations using the software XLSTAT. Piper plot clustering characterized the state's groundwater as bicarbonate-calcium-magnesium (HCO3--Ca2+-Mg2+) type. The study found that the groundwater in the area is heavily impacted by high levels of nitrate and hardness, which is caused by an increase in multivalent cations. The water was classified as ranging from hard to extremely hard, and approximately 25.49% of the state's groundwater has nitrate levels that exceed the acceptable limits. The MK test showed a significant increasing correlation in trends for parameters such as nitrate, sulfate, fluoride, chloride, bicarbonate, total hardness, and electrical conductivity. It also showed a significant decreasing correlation for calcium, magnesium, potassium, and sodium. These results were observed at a confidence level of 95%. The analysis of trends has shown that human-related factors have a considerable effect on the characteristics of groundwater quality. It is therefore recommended that such human-related factors be taken into consideration when developing policies for managing groundwater resources. Consequently, these policies should emphasize the strict enforcement of rules and standards that limit the overuse of fertilizers, ensure the appropriate disposal of municipal solid and liquid wastes, and regulate industrial pollutants.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Água Subterrânea/análise , Índia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Nitratos/análise
2.
Chemosphere ; 307(Pt 2): 135825, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948091

RESUMO

Presence of heavy metal (HM) ions in wastewater have emerged as among the most prominent issues for improving water quality and reducing it's consequences for the environment, animal and public health. This paper mainly focuses on the remediation of HM ions from wastewater utilizing the relatively inexpensive and widely accessible agricultural waste-Sugarcane Bagasse (SCB). For this, a brief understanding of HMs was discussed (by understanding the sources and toxicity of HM, advantages and shortcomings of conventional processes). Apart from that, to understand the potential of SCB, this review would provide vital information on employing SCB biosorbent in natural and modified forms for HM removal. Therefore, various ways of SCB modifications (including physical, chemical, and composite formation), essential optimal operational conditions (solution pH, dosage of biosorbent, initial metal concentration, contact time, agitation speed, temperature, suitable isotherm and kinetic model) and involving adsorption mechanism were also studied. Finally, significant study gaps were identified to facilitate future research since SCB has been confirmed as a potential bio-adsorbent for removing HM ions.


Assuntos
Metais Pesados , Saccharum , Poluentes Químicos da Água , Adsorção , Celulose , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA