Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Theor Appl Genet ; 136(4): 92, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009920

RESUMO

KEY MESSAGE: Linkage disequilibrium (LD)-based haplotyping with subsequent SNP tagging improved the genomic prediction accuracy up to 0.07 and 0.092 for Fusarium head blight resistance and spike width, respectively, across six different models. Genomic prediction is a powerful tool to enhance genetic gain in plant breeding. However, the method is accompanied by various complications leading to low prediction accuracy. One of the major challenges arises from the complex dimensionality of marker data. To overcome this issue, we applied two pre-selection methods for SNP markers viz. LD-based haplotype-tagging and GWAS-based trait-linked marker identification. Six different models were tested with preselected SNPs to predict the genomic estimated breeding values (GEBVs) of four traits measured in 419 winter wheat genotypes. Ten different sets of haplotype-tagged SNPs were selected by adjusting the level of LD thresholds. In addition, various sets of trait-linked SNPs were identified with different scenarios from the training-test combined and only from the training populations. The BRR and RR-BLUP models developed from haplotype-tagged SNPs had a higher prediction accuracy for FHB and SPW by 0.07 and 0.092, respectively, compared to the corresponding models developed without marker pre-selection. The highest prediction accuracy for SPW and FHB was achieved with tagged SNPs pruned at weak LD thresholds (r2 < 0.5), while stringent LD was required for spike length (SPL) and flag leaf area (FLA). Trait-linked SNPs identified only from training populations failed to improve the prediction accuracy of the four studied traits. Pre-selection of SNPs via LD-based haplotype-tagging could play a vital role in optimizing genomic selection and reducing genotyping costs. Furthermore, the method could pave the way for developing low-cost genotyping methods through customized genotyping platforms targeting key SNP markers tagged to essential haplotype blocks.


Assuntos
Fusarium , Haplótipos , Triticum/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo , Genótipo , Genômica/métodos
2.
BMC Plant Biol ; 22(1): 350, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850617

RESUMO

BACKGROUND: The genetic diversity and population structure of breeding germplasm is central knowledge for crop improvement. To gain insight into the genetic potential of the germplasm used for potato breeding in a Nordic breeding program as well as all available accessions from the Nordic genebank (NordGen), 133 potato genotypes were genotyped using the Infinium Illumina 20 K SNP array. After SNP filtering, 11 610 polymorphic SNPs were included in the analysis. In addition, data from three important breeding traits - percent dry matter and uniformity of tuber shape and eye - were scored to measure the variation potato cultivars and breeding clones. RESULTS: The genetic diversity among the genotypes was estimated using principal coordinate analysis based on the genetic distance between individuals, as well as by using the software STRUCTURE. Both methods suggest that the collected breeding material and the germplasm from the gene-bank are closely related, with a low degree of population structure between the groups. The phenotypic distribution among the genotypes revealed significant differences, especially between farmer's cultivars and released cultivars and breeding clones. The percent heterozygosity was similar between the groups, with a mean average of 58-60%. Overall, the breeding germplasm and the accessions from the Nordic genebank seems to be closely related with similar genetic background. CONCLUSION: The genetic potential of available Nordic potato breeding germplasm is low, and for genetic hybridization purposes, genotypes from outside the Nordic region should be employed.


Assuntos
Solanum tuberosum , Células Clonais , Variação Genética , Genótipo , Heterozigoto , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum/genética
3.
J Exp Bot ; 73(15): 5111-5127, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35727101

RESUMO

The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.


Assuntos
Agricultura , Fenômica , Mudança Climática , Produtos Agrícolas/genética , Estações do Ano
4.
Heredity (Edinb) ; 128(6): 402-410, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34880420

RESUMO

Wheat head blast is a dangerous fungal disease in South America and has recently spread to Bangladesh and Zambia, threatening wheat production in those regions. Host resistance as an economical and environment-friendly management strategy has been heavily relied on, and understanding the resistance loci in the wheat genome is very helpful to resistance breeding. In the current study, two recombinant inbred line (RIL) populations, Alondra/Milan (with 296 RILs) and Caninde#2/Milan-S (with 254 RILs and Milan-S being a susceptible variant of Milan), were used for mapping QTL associated with head blast resistance in field experiments. Phenotyping was conducted in Quirusillas and Okinawa, Bolivia, and in Jashore, Bangladesh, during the 2017-18 and 2018-19 cropping cycles. The DArTseq® technology was employed to genotype the lines, along with four STS markers in the 2NS region. A QTL with consistent major effects was mapped on the 2NS/2AS translocation region in both populations, explaining phenotypic variation from 16.7 to 79.4% across experiments. Additional QTL were detected on chromosomes 2DL, 7AL, and 7DS in the Alondra/Milan population, and 2BS, 4AL, 5AS, 5DL, 7AS, and 7AL in the Caninde#2/Milan-S population, all showing phenotypic effects <10%. The results corroborated the important role of the 2NS/2AS translocation on WB resistance and identified a few novel QTL for possible deployment in wheat breeding. The low phenotypic effects of the non-2NS QTL warrantee further investigation for novel QTL with higher and more stable effects against WB, to alleviate the heavy reliance on 2NS-based resistance.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética
5.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328754

RESUMO

Global climate change is threatening wheat productivity; improved yield under drought conditions is urgent. Here, diverse spring-wheat lines (modern, old and wheat-rye introgressions) were examined in an image-based early-vigour assay and a controlled-conditions (Biotron) trial that evaluated 13 traits until maturity. Early root vigour was significantly higher in the old Swedish lines (root length 8.50 cm) and introgressed lines with 1R (11.78 cm) and 1RS (9.91 cm) than in the modern (4.20 cm) and 2R (4.67 cm) lines. No significant correlation was noted between early root and shoot vigour. A higher yield was obtained under early drought stress in the 3R genotypes than in the other genotype groups, while no clear patterns were noted under late drought. Evaluating the top 10% of genotypes in terms of the stress-tolerance index for yield showed that root biomass, grains and spikes per plant were accountable for tolerance to early drought, while 1000-grain weight and flag-leaf area were accountable for tolerance to late drought. Early root vigour was determined as an important focus trait of wheat breeding for tolerance to climate-change-induced drought. The responsible genes for the trait should be searched for in these diverse lines. Additional drought-tolerance traits determined here need further elaboration to identify the responsible genes.


Assuntos
Secas , Triticum , Mudança Climática , Fenótipo , Melhoramento Vegetal , Triticum/genética
6.
Phytopathology ; 111(6): 1001-1007, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33141648

RESUMO

Septoria tritici blotch (STB) is a major foliar disease globally that is notorious for quickly developing fungicide resistance, making host resistance an indispensable component in mitigating STB. The International Maize and Wheat Improvement Center (CIMMYT) wheat line Murga is well known for its high, durable, and broad-spectrum resistance against STB infection. This study aimed to investigate the resistance mechanism of Murga to facilitate its utilization in breeding. A recombinant inbred line population was derived from a cross between Murga and STB-susceptible line Huirivis#1, comprising 297 progenies. The population was evaluated for adult-plant STB resistance in Toluca, Mexico (from 2017 to 2019), and in La Estanzuela, Uruguay (from 2016 to 2018). Genotyping was performed with the DArTseq platform. Quantitative trait locus (QTL) mapping indicated a major and stable QTL on chromosome 3DL, explaining a phenotypic variation for STB of 41.2 to 62.5% in Mexico and 27.5 to 40.3% in Uruguay. This QTL was regarded as Stb16 based on the comparison of its physical position, the possible origin from synthetic wheat, and its broad-spectrum resistance. Additional QTLs with minor effects were identified on chromosomes 2B, 2D, 3A, 3B, and 5B. The QTL on 5BS was significant in four of the six environments and must be new. Murga was the resistant donor for all QTLs except for those on 2B and 3A. Being an elite breeding line, Stb16 carrier Murga could be used as a promising STB resistance donor. Rational employment of Stb16 could contribute to STB management yet avoid the rapid emergence of Stb16-virulent isolates.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas , Triticum/genética
7.
Theor Appl Genet ; 133(9): 2673-2683, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488302

RESUMO

KEY MESSAGE: Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and multiple minor QTL in an additive mode. Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line population with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one location in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 2017-2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being potentially useful in marker-assisted selection.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Bangladesh , Basidiomycota/patogenicidade , Bolívia , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
8.
J Proteome Res ; 18(2): 732-740, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277078

RESUMO

Technical biases are introduced in omics data sets during data generation and interfere with the ability to study biological mechanisms. Several normalization approaches have been proposed to minimize the effects of such biases, but fluctuations in the electrospray current during liquid chromatography-mass spectrometry gradients cause local and sample-specific bias not considered by most approaches. Here we introduce a software named NormalyzerDE that includes a generic retention time (RT)-segmented approach compatible with a wide range of global normalization approaches to reduce the effects of time-resolved bias. The software offers straightforward access to multiple normalization methods, allows for data set evaluation and normalization quality assessment as well as subsequent or independent differential expression analysis using the empirical Bayes Limma approach. When evaluated on two spike-in data sets the RT-segmented approaches outperformed conventional approaches by detecting more peptides (8-36%) without loss of precision. Furthermore, differential expression analysis using the Limma approach consistently increased recall (2-35%) compared to analysis of variance. The combination of RT-normalization and Limma was in one case able to distinguish 108% (2597 vs 1249) more spike-in peptides compared to traditional approaches. NormalyzerDE provides widely usable tools for performing normalization and evaluating the outcome and makes calculation of subsequent differential expression statistics straightforward. The program is available as a web server at http://quantitativeproteomics.org/normalyzerde .


Assuntos
Viés , Interpretação Estatística de Dados , Internet , Proteômica/métodos , Software , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas , Proteômica/estatística & dados numéricos , Padrões de Referência
9.
J Transl Med ; 17(1): 184, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151397

RESUMO

BACKGROUND: SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome coverage achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods used are those provided in instrument-based data analysis software or those used for microarray data. This study, for the first time provides an experimental evidence for selection of normalization method optimal for biomarker identification. METHODS: The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statistical criteria in 'Normalyzer'-a tool which provides comparative evaluation of normalization by different methods. Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical clustering in Genesis software v.1.8.1. RESULTS: Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized with Loess-R stratified the study groups optimally. CONCLUSION: This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identification of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also demonstrates the need to base the choice of normalization method on the application of the data.


Assuntos
Biomarcadores/análise , Espectrometria de Massas , Proteoma/análise , Proteômica , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Escherichia coli , Estudos de Avaliação como Assunto , Células HeLa , Humanos , Células K562 , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteoma/normas , Proteômica/métodos , Proteômica/normas , Padrões de Referência , Valores de Referência , Software , Coloração e Rotulagem , Leveduras
10.
Physiol Plant ; 162(2): 219-238, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080293

RESUMO

Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.


Assuntos
Edição de Genes/métodos , Genes de Plantas/genética , Melhoramento Vegetal/métodos , Plantas/genética , Agricultura/legislação & jurisprudência , Agricultura/métodos , Agricultura/tendências , Edição de Genes/legislação & jurisprudência , Edição de Genes/tendências , Plantas/classificação , Plantas Geneticamente Modificadas , Pesquisa/legislação & jurisprudência , Pesquisa/tendências , Países Escandinavos e Nórdicos
11.
Physiol Plant ; 164(4): 442-451, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29536550

RESUMO

The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate.


Assuntos
Melhoramento Vegetal/métodos , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Agricultura , Países Bálticos , Eutrofização/fisiologia
12.
J Proteome Res ; 15(7): 2143-51, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27224449

RESUMO

In bottom-up mass spectrometry (MS)-based proteomics, peptide isotopic and chromatographic traces (features) are frequently used for label-free quantification in data-dependent acquisition MS but can also be used for the improved identification of chimeric spectra or sample complexity characterization. Feature detection is difficult because of the high complexity of MS proteomics data from biological samples, which frequently causes features to intermingle. In addition, existing feature detection algorithms commonly suffer from compatibility issues, long computation times, or poor performance on high-resolution data. Because of these limitations, we developed a new tool, Dinosaur, with increased speed and versatility. Dinosaur has the functionality to sample algorithm computations through quality-control plots, which we call a plot trail. From the evaluation of this plot trail, we introduce several algorithmic improvements to further improve the robustness and performance of Dinosaur, with the detection of features for 98% of MS/MS identifications in a benchmark data set, and no other algorithm tested in this study passed 96% feature detection. We finally used Dinosaur to reimplement a published workflow for peptide identification in chimeric spectra, increasing chimeric identification from 26% to 32% over the standard workflow. Dinosaur is operating-system-independent and is freely available as open source on https://github.com/fickludd/dinosaur .


Assuntos
Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Bases de Dados de Proteínas , Peptídeos/análise , Fluxo de Trabalho
13.
J Proteome Res ; 15(2): 638-46, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704985

RESUMO

Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.


Assuntos
Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum tuberosum/metabolismo , Biomarcadores/metabolismo , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Espectrometria de Massas , Análise Multivariada , Peptídeos/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
14.
J Proteome Res ; 14(2): 676-87, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25407311

RESUMO

High-throughput multiplexed protein quantification using mass spectrometry is steadily increasing in popularity, with the two major techniques being data-dependent acquisition (DDA) and targeted acquisition using selected reaction monitoring (SRM). However, both techniques involve extensive data processing, which can be performed by a multitude of different software solutions. Analysis of quantitative LC-MS/MS data is mainly performed in three major steps: processing of raw data, normalization, and statistical analysis. To evaluate the impact of data processing steps, we developed two new benchmark data sets, one each for DDA and SRM, with samples consisting of a long-range dilution series of synthetic peptides spiked in a total cell protein digest. The generated data were processed by eight different software workflows and three postprocessing steps. The results show that the choice of the raw data processing software and the postprocessing steps play an important role in the final outcome. Also, the linear dynamic range of the DDA data could be extended by an order of magnitude through feature alignment and a charge state merging algorithm proposed here. Furthermore, the benchmark data sets are made publicly available for further benchmarking and software developments.


Assuntos
Cromatografia Líquida/métodos , Proteínas/química , Espectrometria de Massas em Tandem/métodos
15.
J Proteome Res ; 13(6): 3114-20, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24766612

RESUMO

High-throughput omics data often contain systematic biases introduced during various steps of sample processing and data generation. As the source of these biases is usually unknown, it is difficult to select an optimal normalization method for a given data set. To facilitate this process, we introduce the open-source tool "Normalyzer". It normalizes the data with 12 different normalization methods and generates a report with several quantitative and qualitative plots for comparative evaluation of different methods. The usefulness of Normalyzer is demonstrated with three different case studies from quantitative proteomics and transcriptomics. The results from these case studies show that the choice of normalization method strongly influences the outcome of downstream quantitative comparisons. Normalyzer is an R package and can be used locally or through the online implementation at http://quantitativeproteomics.org/normalyzer .


Assuntos
Software , Interpretação Estatística de Dados , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
16.
PLoS One ; 19(2): e0298350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359024

RESUMO

Climate change-induced drought has an effect on the nutritional quality of wheat. Here, the impact of drought at different plant stages on mineral content in mature wheat was evaluated in 30 spring-wheat lines of diverse backgrounds (modern, old and wheat-rye-introgressions). Genotypes with rye chromosome 3R introgression showed a high accumulation of several important minerals, including Zn and Fe, and these also showed stability across drought conditions. High Se content was found in genotypes with chromosome 1R. Old cultivars (K, Mg, Na, P and S) and 2R introgression lines (Fe, Ca, Mn, Mg and Na) demonstrated high mineral yield at early and late drought, respectively. Based on the low nutritional value often reported for modern wheat and negative climate effects on the stability of mineral content and yield, genes conferring high Zn/Fe, Se, and stable mineral yield under drought at various plant stages should be explicitly explored among 3R, 1R, old and 2R genotypes, respectively.


Assuntos
Secas , Triticum , Triticum/genética , Minerais , Genótipo , Estruturas Vegetais
17.
Sci Rep ; 14(1): 9222, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649433

RESUMO

Microwave (MW) heating has gained significant attention in food industries and biomass-to-biofuels through pyrolysis over conventional heating. However, constraints for promoting MW heating related to the use of different MW absorbers are still a major concern that needs to be investigated. The present study was conducted to explore the MW heating performance of biochar as a low-cost MW absorber for performing pyrolysis. Experiments were performed on biochar under different biochar dosing (25 g, 37.5 g, 50 g), MW power (400 W, 700 W, 1000 W), and particle sizes (6 mm, 8 mm, 10 mm). Results showed that MW power and biochar dosing significantly impacted average heating rate (AHR) from 17.5 to 65.4 °C/min at 400 W and 1000 W at 50 g. AHR first increased, and then no significant changes were obtained, from 37.5 to 50 g. AHR was examined by full factorial design, with 94.6% fitting actual data with predicted data. The model suggested that the particle size of biochar influenced less on AHR. Furthermore, microwave absorption efficiency and biochar weight loss were investigated, and microwave absorption efficiency decreased as MW power increased, which means 17.16% of microwave absorption efficiency was achieved at 400 W rather than 700 W and 1000 W. Biochar weight loss estimated by employing mass-balance analysis, 2-10.4% change in biochar weight loss was obtained owing to higher heating rates at higher powers and biochar dosing.


Assuntos
Carvão Vegetal , Micro-Ondas , Pirólise , Carvão Vegetal/química , Calefação , Tamanho da Partícula , Temperatura Alta
18.
Plants (Basel) ; 13(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611568

RESUMO

Challenges of climate change and growth population are exacerbated by noticeable environmental changes, which can increase the range of plant diseases, for instance, net blotch (NB), a foliar disease which significantly decreases barley (Hordeum vulgare L.) grain yield and quality. A resistant germplasm is usually identified through visual observation and the scoring of disease symptoms; however, this is subjective and time-consuming. Thus, automated, non-destructive, and low-cost disease-scoring approaches are highly relevant to barley breeding. This study presents a novel screening method for evaluating NB severity in barley. The proposed method uses an automated RGB imaging system, together with machine learning, to evaluate different symptoms and the severity of NB. The study was performed on three barley cultivars with distinct levels of resistance to NB (resistant, moderately resistant, and susceptible). The tested approach showed mean precision of 99% for various categories of NB severity (chlorotic, necrotic, and fungal lesions, along with leaf tip necrosis). The results demonstrate that the proposed method could be effective in assessing NB from barley leaves and specifying the level of NB severity; this type of information could be pivotal to precise selection for NB resistance in barley breeding.

19.
Front Nutr ; 11: 1393357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933881

RESUMO

Crop yield and quality has increased globally during recent decades due to plant breeding, resulting in improved food security. However, climate change and shifts in human dietary habits and preferences display novel pressure on crop production to deliver enough quantity and quality to secure food for future generations. This review paper describes the current state-of-the-art and presents innovative approaches related to alien introgressions into wheat, focusing on aspects related to quality, functional characteristics, nutritional attributes, and development of novel food products. The benefits and opportunities that the novel and traditional plant breeding methods contribute to using alien germplasm in plant breeding are also discussed. In principle, gene introgressions from rye have been the most widely utilized alien gene source for wheat. Furthermore, the incorporation of novel resistance genes toward diseases and pests have been the most transferred type of genes into the wheat genome. The incorporation of novel resistance genes toward diseases and pests into the wheat genome is important in breeding for increased food security. Alien introgressions to wheat from e.g. rye and Aegilops spp. have also contributed to improved nutritional and functional quality. Recent studies have shown that introgressions to wheat of genes from chromosome 3 in rye have an impact on both yield, nutritional and functional quality, and quality stability during drought treatment, another character of high importance for food security under climate change scenarios. Additionally, the introgression of alien genes into wheat has the potential to improve the nutritional profiles of future food products, by contributing higher minerals levels or lower levels of anti-nutritional compounds into e.g., plant-based products substituting animal-based food alternatives. To conclude, the present review paper highlights great opportunities and shows a few examples of how food security and functional-nutritional quality in traditional and novel wheat products can be improved by the use of genes from alien sources, such as rye and other relatives to wheat. Novel and upcoming plant breeding methods such as genome-wide association studies, gene editing, genomic selection and speed breeding, have the potential to complement traditional technologies to keep pace with climate change and consumer eating habits.

20.
Sci Rep ; 14(1): 10131, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698085

RESUMO

Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Consórcios Microbianos/fisiologia , Tricotecenos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA