RESUMO
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.
Assuntos
Diferenciação Celular , Centro Germinativo , Plasmócitos , Animais , Plasmócitos/imunologia , Plasmócitos/metabolismo , Camundongos , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos TransgênicosRESUMO
The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.
Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Animais , Caspase 1/genética , Caspase 8/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Proteína Ligante Fas/metabolismo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Alloreactive memory T cells have been implicated as central drivers of transplant rejection. Perplexingly, innate cytokines, such as IL-6, IL-1ß, and IL-12, are also associated with rejection of organ transplants. However, the pathways of innate immune activation in allogeneic transplantation are unclear. While the role of microbial and cell death products has been previously described, we identified alloreactive memory CD4 T cells as the primary triggers of innate inflammation. Memory CD4 T cells engaged MHC II-mismatched dendritic cells (DCs), leading to the production of innate inflammatory cytokines. This innate inflammation was independent of several pattern recognition receptors and was primarily driven by TNF superfamily ligands expressed by alloreactive memory CD4 T cells. Blocking of CD40L and TNFα resulted in dampened inflammation, and mice genetically deficient in these molecules exhibited prolonged survival of cardiac allografts. Furthermore, myeloid cell and CD8 T cell infiltration into cardiac transplants was compromised in both CD40L- and TNFα-deficient recipients. Strikingly, we found that priming of naive alloreactive CD8 T cells was dependent on licensing of DCs by memory CD4 T cells. This study unravels the key mechanisms by which alloreactive memory CD4 T cells contribute to destructive pathology and transplant rejection.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Dendríticas , Rejeição de Enxerto , Transplante de Coração , Imunidade Inata , Inflamação , Animais , Rejeição de Enxerto/imunologia , Camundongos , Células Dendríticas/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Imunidade Inata/imunologia , Camundongos Endogâmicos C57BL , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Células T de Memória/imunologia , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Citocinas/metabolismo , Citocinas/imunologiaRESUMO
Protein synthesis is tightly regulated by both gene-specific and global mechanisms to match the metabolic and proliferative demands of the cell. While the regulation of global protein synthesis in response to mitogen or stress signals is relatively well understood in multiple experimental systems, how different cell types fine-tune their basal protein synthesis rate is not known. In a previous study, we showed that resting B and T lymphocytes exhibit dramatic differences in their metabolic profile, with implications for their post-activation function. Here, we show that resting B cells, despite being quiescent, exhibit increased protein synthesis in vivo as well as ex vivo. The increased protein synthesis in B cells is driven by mTORC1, which exhibits an intermediate level of activation in these cells when compared with resting T cells and activated B cells. A comparative analysis of the transcriptome and translatome of these cells indicates that the genes encoding the MHC Class II molecules and their chaperone CD74 are highly translated in B cells. These data suggest that the translatome of B cells shows enrichment for genes associated with antigen processing and presentation. Even though the B cells exhibit higher mTORC1 levels, they prevent the translational activation of TOP mRNAs, which are mostly constituted by ribosomal proteins and other translation factors, by upregulating 4EBP1 levels. This mechanism may keep the protein synthesis machinery under check while enabling higher levels of translation in B cells.
Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Ribossômicas/metabolismo , Linfócitos T , Linfócitos BRESUMO
Activated T-cells make both interleukin-2 (IL2) and its high-affinity receptor component CD25. Regulatory CD4 T-cells (Treg cells) do not make IL2, and the IL2-CD25 circuit is considered a paracrine circuit crucial in their generation and maintenance. Yet, all T-cells are capable of making IL2 at some stage during differentiation, making a cell-intrinsic autocrine circuit additionally possible. When we re-visited experiments with mixed bone marrow chimeras using a wide range of ratios of wild-type (WT) and IL2-/- genotype progenitors, we found that, as expected, thymic Treg cells were almost equivalent between WT and IL2-/- genotypes at ratios with WT prominence. However, at WT-limiting ratios, the IL2-/- genotype showed lower thymic Treg frequencies, indicating a role for cell-intrinsic autocrine IL2 in thymic Treg generation under IL2-limiting conditions. Further, peripheral IL2-/- naive CD4 T-cells showed poor conversion to inducible Tregs (pTregs) both in vivo and in vitro, again indicating a significant role for cell-intrinsic autocrine IL2 in their generation. Peripherally, the IL2-/- genotype was less prominent at all WT:IL2-/- ratios among both thymic Tregs (tTregs) and pTregs, adoptively transferred IL2-/- Tregs showed poorer survival than WT Tregs did, and RNA-seq analysis of WT and IL2-/- Tregs showed interesting differences in the T-cell receptor and transforming growth factor-beta-bone morphogenetic protein-JNK pathways between them, suggesting a non-titrating role for cell-intrinsic autocrine IL2 in Treg programming. These data indicate that cell-intrinsic autocrine IL2 plays significant roles in Treg generation and maintenance.
Assuntos
Interleucina-2/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Comunicação Autócrina , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Homeostase , Interleucina-2/genética , Ativação Linfocitária , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Quimeras de TransplanteRESUMO
We have previously demonstrated co-receptor level-associated functional heterogeneity in apparently homogeneous naive peripheral CD4 T cells, dependent on MHC-mediated tonic signals. Maturation pathways can differ between naive CD4 and naive CD8 cells, so we tested whether the latter showed similar co-receptor level-associated functional heterogeneity. We report that, when either polyclonal and T-cell receptor (TCR)-transgenic monoclonal peripheral naive CD8 T cells from young mice were separated into CD8hi and CD8lo subsets, CD8lo cells responded poorly, but CD8hi and CD8lo subsets of CD8 single-positive (SP) thymocytes responded similarly. CD8lo naive CD8 T cells were smaller and showed lower levels of some cell-surface molecules, but higher levels of the negative regulator CD5. In addition to the expected peripheral decline in CD8 levels on transferred naive CD8 T cells in wild-type (WT) but not in MHC class I-deficient recipient mice, short-duration naive T-cell-dendritic cell (DC) co-cultures in vitro also caused co-receptor down-modulation in CD8 T cells but not in CD4 T cells. Constitutive pZAP70/pSyk and pERK levels ex vivo were lower in CD8lo naive CD8 T cells and dual-specific phosphatase inhibition partially rescued their hypo-responsiveness. Bulk mRNA sequencing showed major differences in the transcriptional landscapes of CD8hi and CD8lo naive CD8 T cells. CD8hi naive CD8 T cells showed enrichment of genes involved in positive regulation of cell cycle and survival. Our data show that naive CD8 T cells show major differences in their signaling, transcriptional and functional landscapes associated with subtly altered CD8 levels, consistent with the possibility of peripheral cellular aging.
Assuntos
Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Transcriptoma , Adulto , Animais , Senescência Celular/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Adulto JovemRESUMO
Activation of B and T lymphocytes leads to major remodelling of the metabolic landscape of the cells enabling their post-activation functions. However, naive B and T lymphocytes also show metabolic differences, and the genesis, nature and functional significance of these differences are not yet well understood. Here we show that resting B-cells appeared to have lower energy demands than resting T-cells as they consumed lower levels of glucose and fatty acids and produced less ATP. Resting B-cells are more dependent on OXPHOS, while T-cells show more dependence on aerobic glycolysis. However, despite an apparently higher energy demand, T lineage cells showed lower rates of protein synthesis than equivalent B lineage stages. These metabolic differences between the two lineages were established early during lineage differentiation, and were functionally significant. Higher levels of protein synthesis in B-cells were associated with increased synthesis of MHC class II molecules and other proteins associated with antigen internalization, transport and presentation. The combination of higher energy demand and lower protein synthesis in T-cells was consistent with their higher ATP-dependent motility. Our data provide an integrated perspective of the metabolic differences and their functional implications between the B and T lymphocyte lineages.
Assuntos
Linfócitos B/metabolismo , Glicólise/imunologia , Fosforilação Oxidativa , Linfócitos T/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Ácidos Graxos/metabolismo , Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Especificidade de Órgãos , Cultura Primária de Células , Biossíntese de Proteínas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologiaRESUMO
Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert.
RESUMO
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Using a model antigen, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using scRNA-seq+BCR-seq in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveal a novel PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters followed by reduced antigen availability.
RESUMO
Cytokine storm and sterile inflammation are common features of T cell-mediated autoimmune diseases and T cell-targeted cancer immunotherapies. Although blocking individual cytokines can mitigate some pathology, the upstream mechanisms governing overabundant innate inflammatory cytokine production remain unknown. Here, we have identified a critical signaling node that is engaged by effector memory T cells (TEM) to mobilize a broad proinflammatory program in the innate immune system. Cognate interactions between TEM and myeloid cells led to induction of an inflammatory transcriptional profile that was reminiscent, yet entirely independent, of classical pattern recognition receptor (PRR) activation. This PRR-independent "de novo" inflammation was driven by preexisting TEM engagement of both CD40 and tumor necrosis factor receptor (TNFR) on myeloid cells. Cytokine toxicity and autoimmune pathology could be completely rescued by ablating these pathways genetically or pharmacologically in multiple models of T cell-driven inflammation, indicating that TEM instruction of the innate immune system is a primary driver of associated immunopathology. Thus, we have identified a previously unknown trigger of cytokine storm and autoimmune pathology that is amenable to therapeutic interventions.
Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Animais , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos MutantesRESUMO
Accumulating evidence suggests the antiangiogenic potential of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) among the anticancerous properties of this drug. In the present studies, we investigated the antiangiogenic effects of dietary 2-DG on tumour (Lewis lung carcinoma [LLC]) as well as ionising radiation-induced angiogenesis in mouse models. Dietary 2-DG reduced the serum vascular endothelial growth factor levels (â¼40%) in LLC-bearing mice along with a significant inhibition of tumour growth and metastases. In vivo Matrigel plug assays showed significant decrease in vascularisation, Fluorescein isothiocyanate (FITC)-dextran fluorescence and factor VIII-positive cells in the plugs from 2-DG-fed mice, supporting the notion that dietary 2-DG significantly suppresses the tumour-associated and radiation-induced angiogenesis. 2-DG inhibited the glucose usage and lactate production as well as ATP levels of human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner, accompanied by growth inhibition and loss of viability in vitro. Furthermore, 2-DG inhibited the capillary-like tube formation in Matrigel as well as migration and transwell invasion by HUVECs, which are functional indicators of the process of angiogenesis. These results suggest that dietary 2-DG inhibits processes related to angiogenesis, which can impair the growth and metastasis of tumours.
Assuntos
Inibidores da Angiogênese/farmacologia , Antimetabólitos/farmacologia , Carcinoma Pulmonar de Lewis/metabolismo , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Carcinoma Pulmonar de Lewis/patologia , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Neovascularização Patológica/patologia , Radiação Ionizante , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Memory T and B lymphocyte numbers are thought to be regulated by recent and cumulative microbial exposures. We report here that memory-phenotype lymphocyte frequencies in B, CD4 and CD8 T-cells in 3-monthly serial bleeds from healthy young adult humans were relatively stable over a 1-year period, while Plasmablast frequencies were not, suggesting that recent environmental exposures affected steady state levels of recently activated but not of memory lymphocyte subsets. Frequencies of memory B and CD4 T cells were not correlated, suggesting that variation in them was unlikely to be determined by cumulative antigenic exposures. Immunophenotyping of adult siblings showed high concordance in memory, but not of recently activated lymphocyte subsets. To explore the possibility of cell-intrinsic regulation of T cell memory, we screened effector memory-phenotype T cell (TEM) frequencies in common independent inbred mice strains. Using two pairs from these strains that differed predominantly in either CD4 TEM and/or CD8 TEM frequencies, we constructed bi-parental bone marrow chimeras in F1 recipient mice, and found that memory T cell frequencies in recipient mice were determined by donor genotypes. Together, these data suggest cell-autonomous determination of memory T niche size, and suggest mechanisms maintaining immune variability.
Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Adulto , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Contagem de Linfócitos , Masculino , CamundongosRESUMO
Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/ß-T cells (TCRß-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRß-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRß-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/mortalidade , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Feminino , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Interleukin 9 (IL-9)-producing helper T (Th9) cells have a crucial function in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune responses. In addition to Th9, Th2, Th17 and Foxp3+ regulatory T (Treg) cells produce IL-9. A transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that the forkhead family transcription factor Foxo1 is required for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTreg cells. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells.The transcription factor Foxo1 can control regulatory T cell and Th1 function. Here the authors show that Foxo1 is also critical for IL-9 production by Th9 cells and other IL-9-producing cells.