Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123908

RESUMO

In recent years, the integration of deep learning into robotic grasping algorithms has led to significant advancements in this field. However, one of the challenges faced by many existing deep learning-based grasping algorithms is their reliance on extensive training data, which makes them less effective when encountering unknown objects not present in the training dataset. This paper presents a simple and effective grasping algorithm that addresses this challenge through the utilization of a deep learning-based object detector, focusing on oriented detection of key features shared among most objects, namely straight edges and corners. By integrating these features with information obtained through image segmentation, the proposed algorithm can logically deduce a grasping pose without being limited by the size of the training dataset. Experimental results on actual robotic grasping of unknown objects over 400 trials show that the proposed method can achieve a higher grasp success rate of 98.25% compared to existing methods.

2.
IEEE Trans Neural Netw ; 20(5): 758-67, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19369155

RESUMO

It is interesting to observe that humans are able to manipulate an object easily and skillfully without the exact knowledge of the object, contact points, or kinematics of our fingers. However, research so far on multifingered robot control has assumed that the kinematics and contact points of the fingers are known exactly. In many applications of multifingered robot hands, the kinematics and contact points of the fingers are uncertain and structures of the Jacobian matrices are unknown. In this paper, we propose an adaptive neural network (NN) Jacobian controller for multifingered robot hand with uncertainties in kinematics, Jacobian matrices, and dynamics. It is shown that using NNs, the uniform ultimate boundedness of the position error can be achieved in the presence of the uncertainties. Simulation results are presented to illustrate the performance of the proposed controller.


Assuntos
Retroalimentação , Redes Neurais de Computação , Robótica , Algoritmos , Inteligência Artificial , Fenômenos Biomecânicos , Simulação por Computador , Atividade Motora , Robótica/métodos , Análise e Desempenho de Tarefas , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA