Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(3): 1279-1287, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33434432

RESUMO

The synthesis of highly water-dispersible iron oxide nanoparticles with surface functional groups and precisely controlled sizes is essential for biomedical application. In this paper, we report a one-pot strategy for versatile surface functionalization. The iron oxide nanoparticles are first synthesized by thermal decomposition of iron(III) acetylacetonate (Fe(acac)3) in diethylene glycol (DEG), and their surfaces are modified by adding the surface ligands at the end of the reaction. The size of iron oxide nanoparticles can be precisely controlled in nanometer scale by continuous growth. This facile synthesis method enables the surface modification with different coating materials such as dopamine (DOPA), polyethylene glycol with thiol end group (thiol-PEG), and poly(acrylic acid) (PAA) onto the iron oxide nanoparticles, introducing new surface functionalities for future biomedical application. From transmission electron microscopy (TEM) and X-ray diffraction (XRD), the morphology and crystal structure are not changed during surface functionalization. The attachment of surface ligands is studied by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). The surface functional groups are confirmed by X-ray Photoelectron Spectroscopy (XPS). In correlation with the change of hydrodynamic size, PAA coated nanoparticles are found to exhibit outstanding stability in aqueous solution. Furthermore, we demonstrate that the functional groups are available for conjugating with other molecules such as fluorescent dye, showing potential biological applications. Lastly, the magnetic resonance phantom studies demonstrate that iron oxide nanoparticles with PAA coating can be used as T1 and T2 dual-modality contrast agents. Both r1 and r2 relaxivities significantly increase after surface functionalization with PAA, indicating improved sensitivity.

2.
RSC Adv ; 13(39): 27549-27557, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720829

RESUMO

Bloodstain detection can provide crucial information and evidence at a crime scene; however, the ability to selectively detect bloodstains in a non-destructive manner with high sensitivity and low background is limited. This study reports a fluorescent dye (sulfonate indolizine squaraine, SO3SQ) for bloodstain visualization under near-infrared (NIR) irradiation. While the dye itself is minimally fluorescent in aqueous solution, it exhibits a "turn-on" mechanism upon binding with human serum albumin (HSA) as the fluorescence intensity increases over 160 times with strong absorption and emission at 693 nm and 758 nm, respectively. Bloodstains can be visualized on a surface even after being diluted 1000 times, and washed latent bloodstains can be detected with high sensitivity. Further, the turn-on fluorescent emission lasts for a minimum of seven days, allowing adequate time for detection. This study also indicates that the SO3SQ can sensitively detect bloodstain after the bloodstain aged for one week. Furthermore, the detection of latent blood fingerprint patterns from colorful backgrounds is demonstrated using this non-destructive method. The selective turn-on fluorescent dye with NIR excitation and emission is highly suitable in forensic science for bloodstain visualization.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443944

RESUMO

The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application.

4.
Nanoscale ; 12(16): 9272-9283, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32313915

RESUMO

The direct synthesis of highly water-soluble nanoparticles has attracted intensive interest, but systematic size control has not been reported. Here, we developed a general method for synthesizing monodisperse water-soluble iron oxide nanoparticles with nanometer-scale size increments from 4 nm to 13 nm in a single reaction. Precise size control was achieved by continuous growth in an amphiphilic solvent, diethylene glycol (DEG), where the growth step was separated from the nucleation step by sequential addition of a reactant. There was only one reactant in the synthesis and no need for additional capping agents and reducing agents. This study reveals the "living growth" character of iron oxide nanoparticles synthesised in an amphiphilic solvent. The synthetic method shows high reproducibility. The as-prepared iron oxide nanoparticles are extremely water soluble without any surface modification. Surprisingly, the synthesized 9 nm iron oxide nanoparticles exhibit extremely high transversal and longitudinal relaxivities of 425 mM-1 s-1 and 32 mM-1 s-1 respectively, which is among the highest transversal relaxivity in the literature for sub-10 nm spherical nanoparticles. This study will not only shed light on the continuous growth phenomenon of iron oxide nanoparticles in an amphiphilic solvent, but could also stimulate the synthesis and application of iron oxide nanoparticles. The continuous growth method could be further extended to other materials for the controlled synthesis of water-soluble nanoparticles.

5.
MethodsX ; 7: 100789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071890

RESUMO

A novel laboratory simulation system has been developed for the study of the corrosion of uranium metal in soils. Corrosion and transportation of depleted uranium (DU) as the metal undergoes weathering as a buried material within the soil environment. The corrosion of uranium metal in soil was not well understood due to the gas-liquid-solid phase of the soil. This study presents a novel method to investigate the change of uranium species during the process of process of oxidation of metallic uranium in these environments. Compared with other techniques used for the study of environmental corrosion of metals in soils, this method has the advantage of low secondary uranium pollution, no energy consumption, and ease of operation. The simulation system has been used for the following studies: •Simultaneously simulate the corrosion of uranium metal in different soil moisture regimes•Study the influence of biogeochemical factors on the corrosion of uranium metal•Investigate the change of uranium species during oxidation.

6.
MethodsX ; 7: 100758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32055456

RESUMO

After depleted uranium (DU) is deposited in the environment, it corrodes producing mobile uranium species. The upward transport mechanism in a desert landscape is associated with the dissolution/precipitation of uranium minerals that vary in composition and solubility in soil pore water. The objective of this study is to develop the laboratory column simulation to investigate the upward transport mechanism with cyclic capillary wetting and drying moisture regimes. Results showed that evaporation driven upward transport occurred even during the first 2 months of wetting-drying regimes. Evaporation driven upward transport may control the U movement in the soil profile in an arid climate. The new system did not generate any uranium-containing wastewater. •Simulates the upward transport process of pollutants with different pollution levels and species.•Simultaneously simulate the transport process of multiple pollutants simultaneously.•Evaluate the influence of biogeochemical factors on pollutant transport such as various cations and anions (Ca, Mg and carbonates) in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA