RESUMO
It is challenging for endoscopists to accurately detect esophageal lesions during gastrointestinal endoscopic screening due to visual similarities among different lesions in terms of shape, size, and texture among patients. Additionally, endoscopists are busy fighting esophageal lesions every day, hence the need to develop a computer-aided diagnostic tool to classify and segment the lesions at endoscopic images to reduce their burden. Therefore, we propose a multi-task classification and segmentation (MTCS) model, including the Esophageal Lesions Classification Network (ELCNet) and Esophageal Lesions Segmentation Network (ELSNet). The ELCNet was used to classify types of esophageal lesions, and the ELSNet was used to identify lesion regions. We created a dataset by collecting 805 esophageal images from 255 patients and 198 images from 64 patients to train and evaluate the MTCS model. Compared with other methods, the proposed not only achieved a high accuracy (93.43%) in classification but achieved a dice similarity coefficient (77.84%) in segmentation. In conclusion, the MTCS model can boost the performance of endoscopists in the detection of esophageal lesions as it can accurately multi-classify and segment the lesions and is a potential assistant for endoscopists to reduce the risk of oversight.
Assuntos
Aprendizado Profundo , Endoscopia , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
The automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscopists in decision making, because endoscopists are expected to correct the false results predicted by the diagnosis system if more supporting information is provided. In order to help endoscopists improve the diagnosis accuracy in identifying the types of lesions, an image retrieval module is added in the classification task to provide an additional confidence level of the predicted types of esophageal lesions. In addition, a mutual attention module is added in the segmentation task to improve its performance in determining the locations of esophageal lesions. The proposed model is evaluated and compared with other deep learning models using a dataset of 1003 endoscopic images, including 290 esophageal cancer, 473 esophagitis, and 240 normal. The experimental results show the promising performance of our model with a high accuracy of 96.76% for the classification and a Dice coefficient of 82.47% for the segmentation. Consequently, the proposed multi-task deep learning model can be an effective tool to help endoscopists in judging esophageal lesions.
Assuntos
Neoplasias Esofágicas , Atenção , Endoscopia , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
Extensive attention has been given to the use of cognitive radio technology in underwater acoustic networks since the acoustic spectrum became scarce due to the proliferation of human aquatic activities. Most of the recent studies on underwater cognitive acoustic networks (UCANs) mainly focus on spectrum management or protocol design. Few efforts have addressed the quality-of-service (QoS) of UCANs. In UCANs, secondary users (SUs) have lower priority to use acoustic spectrum than primary users (PUs) with higher priority to access spectrum. As a result, the QoS of SUs is difficult to ensure in UCANs. This paper proposes an analytical model to investigate the link connectivity and the probability of coverage of SUs in UCANs. In particular, this model takes both topological connectivity and spectrum availability into account, though spectrum availability has been ignored in most recent studies. We conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Simulation results show that our proposed model is quite accurate. Besides, our results also imply that the link connectivity and the probability of coverage of SUs heavily depend on both the underwater acoustic channel conditions and the activities of PUs.
RESUMO
BACKGROUND AND OBJECTIVE: A deep learning-based intelligent diagnosis system can significantly reduce the burden of endoscopists in the daily analysis of esophageal lesions. Considering the need to add new tasks in the diagnosis system, a deep learning model that can train a series of tasks incrementally using endoscopic images is essential for identifying the types and regions of esophageal lesions. METHOD: In this paper, we proposed a continual learning-based esophageal lesion network (CLELNet), in which a convolutional autoencoder was designed to extract representation features of endoscopic images among different esophageal lesions. The proposed CLELNet consists of shared layers and task-specific layers. Shared layers are used to extract common features among different lesions while task-specific layers can complete different tasks. The first two tasks trained by the CLELNet are the classification (task 1) and the segmentation (task 2). We collected a dataset of esophageal endoscopic images from Macau Kiang Wu Hospital for training and testing the CLELNet. RESULTS: The experimental results showed that the classification accuracy of task 1 was 95.96%, and the Intersection Over Union and the Dice Similarity Coefficient of task 2 were 65.66% and 78.08%, respectively. CONCLUSIONS: The proposed CLELNet can realize task-incremental learning without forgetting the previous tasks and thus become a useful computer-aided diagnosis system in esophageal lesions analysis.
Assuntos
Diagnóstico por Computador , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , EndoscopiaRESUMO
Despite being widely utilized to help endoscopists identify gastrointestinal (GI) tract diseases using classification and segmentation, models based on convolutional neural network (CNN) have difficulties in distinguishing the similarities among some ambiguous types of lesions presented in endoscopic images, and in the training when lacking labeled datasets. Those will prevent CNN from further improving the accuracy of diagnosis. To address these challenges, we first proposed a Multi-task Network (TransMT-Net) capable of simultaneously learning two tasks (classification and segmentation), which has the transformer designed to learn global features and can combine the advantages of CNN in learning local features so that to achieve a more accurate prediction in identifying the lesion types and regions in GI tract endoscopic images. We further adopted the active learning in TransMT-Net to tackle the labeled image-hungry problem. A dataset was created from the CVC-ClinicDB dataset, Macau Kiang Wu Hospital, and Zhongshan Hospital to evaluate the model performance. Then, the experimental results show that our model not only achieved 96.94% accuracy in the classification task and 77.76% Dice Similarity Coefficient in the segmentation task but also outperformed those of other models on our test set. Meanwhile, active learning also produced positive results for the performance of our model with a small-scale initial training set, and even its performance with 30% of the initial training set was comparable to that of most comparable models with the full training set. Consequently, the proposed TransMT-Net has demonstrated its potential performance in GI tract endoscopic images and it through active learning can alleviate the shortage of labeled images.