Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Toxicol Appl Pharmacol ; 482: 116792, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142783

RESUMO

Radiotherapy is a common modality for cancer treatment. However, it is often associated with normal tissue toxicity in 20-80% of the patients. Radioprotectors can improve the outcome of radiotherapy by selectively protecting normal cells against radiation toxicity. In the present study, compound libraries containing 54 kinase inhibitors and 80 FDA-approved drugs were screened for radioprotection of lymphocytes using high throughput cell analysis. A second-generation FDA-approved kinase inhibitor, bosutinib, was identified as a potential radioprotector for normal cells. The radioprotective efficacy of bosutinib was evinced from a reduction in radiation induced DNA damage, caspase-3 activation, DNA fragmentation and apoptosis. Oral administration of bosutinib protected mice against whole body irradiation (WBI) induced morbidity and mortality. Bosutinib also reduced radiation induced bone-marrow aplasia and hematopoietic damage in mice exposed to 4 Gy and 6 Gy dose of WBI. Mechanistic studies revealed that the radioprotective action of bosutinib involved interaction with cellular thiols and modulation of JNK pathway. The addition of glutathione and N-acetyl cysteine significantly reduced the radioprotective efficacy of bosutinib. Moreover, bosutinib did not protect cancer cells against radiation induced toxicity. On the contrary, bosutinib per se exhibited anticancer activity against human cancer cell lines. The results highlight possible use of bosutinib as a repurposable radioprotective agent for mitigation of radiation toxicity in cancer patients undergoing radiotherapy.


Assuntos
Compostos de Anilina , Antineoplásicos , Reposicionamento de Medicamentos , Nitrilas , Quinolinas , Lesões por Radiação , Protetores contra Radiação , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dano ao DNA , Sistema de Sinalização das MAP Quinases , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
2.
Phytother Res ; 38(3): 1555-1573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281735

RESUMO

Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.


Assuntos
Curcumina , Curcumina/análogos & derivados , Doença Enxerto-Hospedeiro , Animais , Camundongos , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Linfócitos T , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia
3.
Toxicol Appl Pharmacol ; 461: 116389, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716864

RESUMO

Increasing use of ionizing radiation (IR) in medicine, industry, agriculture and research ensues potential health hazards if not used properly or contained effectively. However, radioprotectors which are effective in clinical and/or accidental radiation exposures are still elusive. In this direction, we have explored the radioprotective potential of Withaferin A, a plant withanolide, which was recently shown to be safe and well tolerated in cancer patients in a clinical trial and is also known to be a radio-sensitizer in cancer cells. Our results show that, Withaferin A (WA) protected only normal lymphocytes, but not cancer cells, against IR-induced apoptosis and offered radioprotection even when added post-radiation exposure. WA treatment led to significant inhibition of IR-induced caspase-3 activation and decreased IR-induced DNA damage to lymphocytes and bone-marrow cells. WA reduced intracellular ROS and GSH levels and only thiol based anti-oxidants could abrogate the radio-protective effects of WA, indicating a crucial role of cellular/protein thiols in its biological activity. The inability of WA-glutathione adduct to offer radioprotection further underscored the role of cellular thiols. WA induced pro-survival transcription factor, Nrf-2, and expression of cytoprotective genes HO-1, catalase, SOD, peroxiredoxin-2 via ERK. Further, WA administration could rescue mice against radiation induced mortality, DNA damage, increase in micro-nucleated polychromatic erythrocytes (mn-PCEs) and increased ratio of polychromatic erythrocytes (PCEs) to Normochromatic Erythrocytes (NCEs) in bone-marrow, demonstrating its potent in vivo the radio-protective efficacy. In conclusion, WA selectively protects normal cells against IR-induced apoptosis via activation of cytoprotective Nrf-2 pathway.


Assuntos
Vitanolídeos , Camundongos , Animais , Vitanolídeos/farmacologia , Linfócitos , Radiação Ionizante , Apoptose , Dano ao DNA , Glutationa/metabolismo , Compostos de Sulfidrila
4.
Mol Divers ; 27(2): 635-649, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35538380

RESUMO

The coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is affecting human life in an unprecedented manner and has become a global public health emergency. Identification of novel inhibitors of viral infection/replication is the utmost priority to curtail COVID-19 progression. A pre-requisite for such inhibitors is good bioavailability, non-toxicity and serum stability. Computational studies have shown that curcumin can be a candidate inhibitor of certain SARS-CoV-2 proteins; however, poor bio-availability of curcumin limits its possible therapeutic application. To circumvent this limitation, we have used mitocurcumin (MC), a triphenyl phosphonium conjugated curcumin derivative, to study the ability to inhibit SARS-CoV-2 infection using molecular docking and molecular dynamics (MD) simulation. MC is serum stable and several fold more potent as compared to curcumin. Molecular docking studies revealed that MC can bind at active site of SARS-CoV-2 ADP Ribose Phosphatase (NSP3) and SARS-CoV-2 methyltransferase (NSP10-NSP16 complex) with a high binding energy of - 10.3 kcal/mol and - 10.4 kcal/mol, respectively. MD simulation (100 ns) studies revealed that binding of MC to NSP3 and NSP16 resulted in a stable complex. MC interacted with critical residues of NSP3 macro-domain and NSP10-NSP16 complex and occupied their active sites. NSP3 is known to suppress host immune responses whereas NSP10-NSP16 complex is known to prevent immune recognition of viral mRNA. Our study suggests that MC can potentially inhibit the activity of NSP3 and NSP10-NSP16 complex, resulting in compromised viral immune evasion mechanism, and thereby accentuate the innate immune mediated clearance of viral load.


Assuntos
COVID-19 , Curcumina , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Evasão da Resposta Imune , Proteínas não Estruturais Virais
5.
Nanomedicine ; 40: 102495, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838992

RESUMO

In present study, multifunctional bilayered dermal patches with antibacterial, antioxidant and anti-inflammatory properties were developed using solvent casting or electrospinning methods and compared for performance. Top layer was made up of polycaprolactone (PCL) and chitosan (CS) while bottom layer was made of polyvinyl alcohol (PVA) with curcumin nanoparticles and soluble eggshell membrane protein (SESM) as the wound healing agents. Curcumin nanoparticles showed reduction in the production of reactive oxygen species (ROS) and inflammatory cytokines and markers in mice T cells or human macrophages, confirming their antioxidant and anti-inflammatory properties while SESM improved migration of human adult dermal fibroblasts, suggesting its contribution to wound healing. The dermal patches were hemocompatible and antibacterial and also provided adequate absorption of wound exudates, support and components required for recruitment of cells and deposition of extracellular matrix to enable superior wound healing than its commercial counterpart in a full thickness excision wound model in rats.


Assuntos
Quitosana , Curcumina , Animais , Antibacterianos , Curcumina/farmacologia , Camundongos , Álcool de Polivinil , Ratos , Cicatrização
6.
Arch Biochem Biophys ; 704: 108890, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894196

RESUMO

The survival, functioning and proliferation of mammalian cells are highly dependent on the cellular response and adaptation to changes in their redox environment. Cancer cells often live in an altered redox environment due to aberrant neo-vasculature, metabolic reprogramming and dysregulated proliferation. Thus, redox adaptations are critical for their survival. Glutathione plays an essential role in maintaining redox homeostasis inside the cells by binding to redox-sensitive cysteine residues in proteins by a process called S-glutathionylation. S-Glutathionylation not only protects the labile cysteine residues from oxidation, but also serves as a sensor of redox status, and acts as a signal for stimulation of downstream processes and adaptive responses to ensure redox equilibrium. The present review aims to provide an updated overview of the role of the unique redox adaptations during carcinogenesis and cancer progression, focusing on their dependence on S-glutathionylation of specific redox-sensitive proteins involved in a wide range of processes including signalling, transcription, structural maintenance, mitochondrial functions, apoptosis and protein recycling. We also provide insights into the role of S-glutathionylation in the development of resistance to chemotherapy. Finally, we provide a strong rationale for the development of redox targeting drugs for treatment of refractory/resistant cancers.


Assuntos
Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glutationa/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Antineoplásicos/uso terapêutico , Carcinogênese/patologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução
7.
Am J Transplant ; 20(8): 2044-2057, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32040239

RESUMO

There is an unmet medical need for radiation countermeasures that can be deployed for treatment of exposed individuals during ionizing radiation (IR) accidents or terrorism. Wharton's jelly mesenchymal stem cells (WJ-MSCs) from human umbilical cord have been shown to avoid allorecognition and induce a tissue-regenerating microenvironment, which makes them an attractive candidate for mitigating IR injury. We found that WJ-MSCs protected mice from a lethal dose of IR even when transplanted up to 24 hours after irradiation, and a combination of WJ-MSCs and antibiotic (tetracycline) could further expand the window of protection offered by WJ-MSCs. This combinatorial approach mitigated IR-induced damage to the hematopoietic and gastrointestinal system. WJ-MSCs increased the serum concentration of the cytoprotective cytokines granulocyte colony-stimulating factor (G-CSF) and IL-6 in mice. Knockdown of G-CSF and IL-6 in WJ-MSCs before injection to lethally irradiated mice or transplantation of WJ-MSCs to lethally irradiated Nrf-2 knockout mice significantly nullified the therapeutic protective efficacy. Hence, WJ-MSCs could be a potential cell-based therapy for individuals accidentally exposed to radiation.


Assuntos
Síndrome Aguda da Radiação , Células-Tronco Mesenquimais , Geleia de Wharton , Síndrome Aguda da Radiação/terapia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Regeneração , Cordão Umbilical
8.
Toxicol Appl Pharmacol ; 289(2): 297-312, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26408225

RESUMO

Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antioxidantes/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , NF-kappa B/metabolismo , Compostos de Sulfidrila/farmacologia , Linfócitos T/efeitos dos fármacos , Vitanolídeos/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Antineoplásicos Fitogênicos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Imunossupressores/farmacocinética , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Vitanolídeos/farmacocinética
9.
Cell Signal ; 121: 111274, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936787

RESUMO

Tumor-associated macrophages (TAMs) secrete cytokines, chemokines, and growth factors in the tumor microenvironment (TME) to support cancer progression. Higher TAM infiltration in the breast TME is associated with a poor prognosis. Previous studies have demonstrated the role of macrophages in stimulating long-range intercellular bridges referred to as tunneling nanotubes (TNTs) in cancer cells. Intercellular communication between cancer cells via TNTs promotes cancer growth, invasion, metastasis, and therapy resistance. Given the important role of TNTs and macrophages in cancer, the role of macrophage-induced TNTs in chemotherapy drug doxorubicin resistance is not known. Furthermore, the mechanism of macrophage-mediated TNT formation is elusive. In this study, it is shown that the macrophage-conditioned medium (MΦCM) partially mimicked inflammatory TME, induced an EMT phenotype, and increased migration in MCF-7 breast cancer cells. Additionally, secreted proteins in MΦCM induced TNT formation in MCF-7 cells, which led to increased resistance to doxorubicin. Transcriptomic analysis of MΦCM-treated MCF-7 cells showed enrichment of the NF-κB and focal adhesion pathways, as well as upregulation of genes involved in EMT, extracellular remodeling, and actin cytoskeleton reorganization. Interestingly, inhibitors of PKC, Src, NF-κB, and p38 decreased macrophage-induced TNT formation in MCF-7 cells. These results reveal the novel role of PKC and Src in inducing TNT formation in cancer cells and suggest that inhibition of PKC and Src activity may likely contribute to reduced macrophage-breast cancer cell interaction and the potential therapeutic strategy of cancer.

10.
Br J Pharmacol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584000

RESUMO

BACKGROUND AND PURPOSE: Acute graft-versus-host disease (GVHD) remains a major barrier to successful transplantation outcomes. Recent studies have shown that pharmacotherapy for GVHD should target both the innate and adaptive inflammatory immune responses. Juglone, a redox-active phytochemical found in walnuts, has shown potent anti-inflammatory effects in models of colitis and inflammatory bowel disease. However, its effects on T-cell-mediated immune responses remain largely unknown. Considering the overlapping mediators of inflammation in GVHD and the aforementioned conditions, we investigated the use of juglone as a prophylactic agent for GVHD. EXPERIMENTAL APPROACH: Immunomodulatory activity and mechanism of action of juglone were studied using murine splenic leukocytes in vitro. The GVHD prophylactic efficacy of orally administered juglone was evaluated using a murine model of allogeneic haematopoietic stem cell transplantation based on an MHC mismatch. KEY RESULTS: Juglone exhibited immunomodulatory activity by (i) inhibiting the activation of dendritic cells and CD4+ T-cells, (ii) inhibiting cytokine secretion and lymphocyte proliferation, and (iii) inducing exhaustion of CD4+ T-cells, as shown by increased expression of CTLA-4 (CD152) and Fas (CD95). Oral administration of juglone significantly reduced mortality and morbidity associated with GVHD while maintaining graft-versus-leukaemia activity. This was accompanied by a decrease in the number of naïve CD4+ cells, and an increase in the number of CD4+ and CD8+ central memory T-cells. CONCLUSION AND IMPLICATIONS: Juglone is a potent immunomodulator for GVHD prophylaxis. Our study is the first to provide a dosage framework for the oral administration of juglone that can be used for clinical development.

11.
Food Funct ; 14(11): 5232-5250, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37194332

RESUMO

The impact of food on immune functions has been recognized for centuries and is now being increasingly explored for therapeutic applications. Rice, in addition to being the staple food in most developing countries, exhibits diverse complexities of phytochemicals among its wide germplasm repertoire, which supports its development as a functional food. In the present study, we have explored the immunomodulatory properties of Gathuwan rice, a local rice variety grown in Chhattisgarh, India, and traditionally used for the treatment of rheumatism. Methanolic Gathuwan Brown Rice Extract (BRE) inhibits T-cell activation and proliferation and cytokine secretion (IL-2, IL-4, IL-6 and IFN-γ) without inducing cell death. BRE exhibits radical scavenging activity in a cell-free system and decreases intracellular reactive oxygen species (ROS) and glutathione levels in lymphocytes. BRE induces nuclear translocation of the immune-regulatory transcription factor Nrf2 via activation of ERK and p-38 MAP kinase and up-regulates the expression of Nrf2-dependent genes (SOD, CAT, HO-1, GPx and TrxR) in lymphocytes. BRE treatment had no effect on cytokine secretion by lymphocytes from Nrf2 knockout mice, confirming the role of Nrf2 in the immunosuppressive effects of BRE. Feeding of Gathuwan brown rice to mice had no effect on the basal haematological parameters, but lymphocytes isolated from these mice were hypo-responsive to mitogenic stimuli. Treatment of allografts with BRE significantly prevented graft-versus-host disease (GVHD)-associated mortality and morbidity in mice. Metabolic pathway enrichment analysis of ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) data revealed a high enrichment ratio of amino acid and vitamin B metabolism pathways, and among metabolite sets, pyridoxamines, phytosphingosines, hydroxybenzaldehydes, hydroxycinnamic acids and indoles were highly enriched bioactive components. In conclusion, Gathuwan BRE suppresses T-cell-mediated immune responses by altering the cellular redox balance and activating the Nrf2 signalling pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Oryza , Animais , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oryza/metabolismo , Espectrometria de Massas em Tandem , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Imunidade , Linfócitos T/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Estresse Oxidativo
12.
Appl Biochem Biotechnol ; 195(3): 2057-2076, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36409426

RESUMO

Specific targeting of anti-cancer drugs to mitochondria is an emerging strategy to enhance cancer cell killing whilst simultaneously overcoming the problem of drug resistance, low bioavailability and limited clinical success of natural products. We have synthesized a mitochondria targeted derivative of Ethyl Ferulate (EF, a naturally occurring ester of ferulic acid), by conjugating it with triphenylphosphonium ion and compared its cytotoxicity with the parent molecule. Mito-Ethyl Ferulate (M-EF) was found to be more potent than EF (~ 400-fold) in inhibiting the growth of A549 and MCF-7 cells and suppressing the clonogenic potential of A549 cells. Notably, M-EF did not induce any cytotoxicity in normal cells (mouse normal fibroblast cells) up to a concentration of 25 µM. Furthermore, M-EF treatment induced significantly higher cell death in MCF-7 and A549 cells, as compared to EF via induction of apoptosis. M-EF treatment increased mitochondrial superoxide production and induced mitochondrial DNA damage and phosphorylation of JNK and AKT in A549 cells. Furthermore, M-EF induced increase in mitochondrial superoxide production and cytotoxicity was attenuated on pre-treatment with mitochondria-targeted antioxidant (mitoTEMPO) indicating the involvement of mitochondrial ROS in the cytotoxic effects of M-EF. Finally, in silico prediction revealed putative mitochondrial targets of M-EF which are known to regulate mitochondrial ROS and cell viability. In conclusion, the improved cytotoxic efficacy of M-EF exemplifies the use of mitochondria-specific drug delivery in future development of natural product based mitochondrial pharmacology.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Superóxidos/metabolismo , Superóxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Mitocôndrias , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Potencial da Membrana Mitocondrial , Neoplasias/metabolismo
13.
Nat Commun ; 13(1): 614, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105868

RESUMO

Distinct lung stem cells give rise to lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). ΔNp63, the p53 family member and p63 isoform, guides the maturation of these stem cells through the regulation of their self-renewal and terminal differentiation; however, the underlying mechanistic role regulated by ∆Np63 in lung cancer development has remained elusive. By utilizing a ΔNp63-specific conditional knockout mouse model and xenograft models of LUAD and LUSC, we found that ∆Np63 promotes non-small cell lung cancer by maintaining the lung stem cells necessary for lung cancer cell initiation and progression in quiescence. ChIP-seq analysis of lung basal cells, alveolar type 2 (AT2) cells, and LUAD reveals robust ∆Np63 regulation of a common landscape of enhancers of cell identity genes. Importantly, one of these genes, BCL9L, is among the enhancer associated genes regulated by ∆Np63 in Kras-driven LUAD and mediates the oncogenic effects of ∆Np63 in both LUAD and LUSC. Accordingly, high BCL9L levels correlate with poor prognosis in LUAD patients. Taken together, our findings provide a unifying oncogenic role for ∆Np63 in both LUAD and LUSC through the regulation of a common landscape of enhancer associated genes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Epitélio , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Knockout
14.
Free Radic Res ; 55(5): 595-625, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34181503

RESUMO

Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.


Assuntos
Neoplasias/radioterapia , Radiação Ionizante , Protetores contra Radiação/uso terapêutico , Humanos , Protetores contra Radiação/farmacologia
15.
J Cell Biochem ; 110(5): 1082-93, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564204

RESUMO

Plumbagin inhibited activation, proliferation, cytokine production, and graft-versus-host disease in lymphocytes and inhibited growth of tumor cells by suppressing nuclear factor-kappaB (NF-kappaB). Plumbagin was also shown to induce reactive oxygen species (ROS) generation in tumor cells via an unknown mechanism. Present report describes a novel role of cellular redox in modulation of immune responses in normal lymphocytes by plumbagin. Plumbagin depleted glutathione (GSH) levels that led to increase in ROS generation. The decrease in GSH levels was due to direct reaction of plumbagin with GSH as evinced by mass spectrometric and HPLC analysis. Further, addition of plumbagin to cells resulted in decrease in free thiol groups on proteins and increase in glutathionylation of proteins. The suppression of mitogen-induced T-cell proliferation and cytokine (IL-2/IL-4/IL-6/IFN-gamma) production by plumbagin was abrogated by thiol antioxidants but not by non-thiol antioxidants confirming that thiols but not ROS play an important role in biological activity of plumbagin. Plumbagin also abrogated mitogen-induced phosphorylation of ERK, IKK, and degradation of IkappaB-alpha. However, it did not affect phosphorylation of P38, JNK, and AKT. Our results for the first time show that antiproliferative effects of plumbagin are mediated by modulation of cellular redox. These results provide a rationale for application of thiol-depleting agents as anti-inflammatory drugs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Naftoquinonas/farmacologia , Compostos de Sulfidrila/metabolismo , Linfócitos T/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Western Blotting , Catalase/metabolismo , Células Cultivadas , Concanavalina A/farmacologia , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Mitógenos/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Mutat Res ; 703(2): 149-57, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20732448

RESUMO

Lymphocytes are more sensitive to radiation in vivo than in vitro. However, the mechanism of this differential response is poorly understood. In the present study, it was found that the lipid peroxidation and cell death were significantly higher in lymphocytes following whole body irradiation (WBI) as compared to lymphocytes exposed to radiation in vitro. EL-4 cells transplanted in mice were also more sensitive to radiation than EL-4 cells irradiated in vitro. DNA repair, as assessed by comet assay, was significantly faster in lymphocytes exposed to 4Gy radiation in vitro as compared to that in lymphocytes obtained from whole body irradiated mice exposed to the same dose of radiation. This was associated with increased NF-κB activation in response to genotoxic stress and lesser activation of caspase in lymphocytes in vitro compared to in vivo. To explain the differential radiosensitivity, we postulated a role of nitric oxide, an extrinsic diffusible mediator of radiosensitivity that has also been implicated in DNA repair inhibition. Nitric oxide levels were significantly elevated in the plasma of whole body irradiated mice but not in the supernatant of cells irradiated in vitro. Addition of sodium nitroprusside (SNP), a nitric oxide donor to cells irradiated in vitro inhibited the repair of DNA damage and enhanced apoptosis (increased Bax to Bcl-2 ratio). Administration of l-NAME, a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. These results confirm that the observed differential radiosensitivity of lymphocytes was due to slow repair of DNA due to nitric oxide production in vivo.


Assuntos
Linfócitos/efeitos da radiação , NF-kappa B/farmacocinética , Óxido Nítrico/efeitos da radiação , Tolerância a Radiação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA/efeitos da radiação , Dexametasona/farmacologia , Ativação Enzimática/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia
17.
Free Radic Res ; 54(11-12): 947-960, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32208775

RESUMO

The choice between immunity or tolerance is a consequence of T-cell fate determined by T-cell receptor affinity to cognate MHC-peptide complex, costimulatory molecules and cytokines from antigen presenting cells. While activated, effector and memory T-cells provide immunity against antigens, regulatory T-cells play a pivotal non-redundant role in immune tolerance and tissue repair. T-cell differentiation and functions are also well known to be governed by the redox status. Physiological redox status is determined by oxygen concentration, reactive oxygen species levels and antioxidant concentration (vitamin C, glutathione, vitamin E). Cellular redox state influences the levels of oxygen-dependent ten-eleven translocase (TET) demethylase, hypoxia inducible factor-1α (HIF-1α), and metabolic reprogramming which in turn control the epigenetic modification, transcription, translation and post-translational stability of FoxP3, the master regulator of regulatory T-cell induction and maintenance. Redox changes during foetal development, pregnancy, ageing, infections and cancer bolster Treg differentiation for immune tolerance to non-dangerous non-self-antigens. Incidentally, the changes in blood oxygen levels in pregnant women and developing foetus are accompanied by increase in tolerance due to increased frequency of CD4 + CD25 + FoxP3+ regulatory T-cells. Ageing associated oxidative stress and solid tumour associated hypoxia are also associated with an increase in the number and function of regulatory T-cells. This review covers the aspects of redox regulation of Treg differentiation and functions during development, ageing, immunity and stem cell homeostasis. We also propose redox modulation based therapeutic interventions for prevention and treatment of T-cell associated disorders.


Assuntos
Linfócitos T Reguladores/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Oxirredução
18.
Int Immunopharmacol ; 84: 106575, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32416453

RESUMO

Acute Graft versus Host Disease (aGVHD) is a frequent and serious complication in patients receiving allogeneic bone marrow transplantation (allo-BMT) and often requires rigorous prophylaxis. The current treatment regimens for aGVHD are associated with several side effects which necessitates the development of novel interventions that prevent aGVHD without precluding graft-versus-tumor effects. In the present study, we show that treatment of donor graft with plant steroidal lactone Withaferin A (WA) prior to transplantation markedly reduced aGVHD mediated damage in target organs without compromising the graft-versus.-tumor activity of the transplanted lymphocytes. WA abrogated post-transplant cytokine storm associated with allo-activation of donor lymphocytes. This was attributed to the ability of WA to inhibit early signaling events in T-cell activation including lymphoblast formation and activation of AKT/mTOR pathway. Mortality and morbidity related to allo-transplantation was significantly reduced in recipients of WA treated donor splenocytes compared to recipient of vehicle treated donor splenocytes. Further, WA treatment did not have any effect on reconstitution of lymphoid and myeloid lineages in recipients, resulting in stable and complete donor chimerism. In agreement with previous reports showing the effectiveness of WA in a mouse model of partial chimerism, our data further establishes that WA is able to attenuate aGVHD in an MHC-mismatched high dose chemo-conditioned murine model without compromising engraftment. This study provides compelling scientific basis for possible application of WA for prevention and treatment of aGVHD in patients receiving allo-BMT.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/imunologia , Serina-Treonina Quinases TOR/imunologia , Vitanolídeos/uso terapêutico , Animais , Feminino , Masculino , Camundongos Endogâmicos BALB C , Vitanolídeos/farmacologia
19.
Radiat Res ; 171(2): 180-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19267543

RESUMO

The aim of the present study was to investigate the protective efficacy of l-arginine in mitigating the injury induced by 2 Gy of total-body gamma radiation (TBI). Mice exposed to radiation (TBI group) had significantly decreased spleen weight, splenocyte numbers and bone marrow cellularity. Administration of l-arginine 2 h after TBI (TBI + l-arginine group) was effective in reducing the radiation-induced depletion of spleen and bone marrow cellularity but was not effective when administered before TBI (l-arginine + TBI group). The radiation-induced decrease in Con A-induced spleen cell proliferation, specific antibody response of spleen B cells to sheep red blood cells, and spleen RNA content was reversed in mice in the TBI + l-arginine group. The radiation-induced increase in serum TNF-alpha levels, serum nitrate/nitrite (NOx) levels, spleen DNA fragmentation, spleen nitric oxide synthase (NOS) activity, spleen inducible NOS (iNOS) activity, and hepatic iNOS activity was reversed in mice in the TBI + l-arginine group. l-Arginine administered before TBI could not reverse these changes. Mice in the TBI + l-arginine group had significantly increased spleen arginase activity compared to mice from either the TBI or l-arginine + TBI group. The results suggest the importance of the time of administration of l-arginine and the l-arginine pathway in mitigating the radiation-induced host immune dysfunction.


Assuntos
Arginina/uso terapêutico , Doenças do Sistema Imunitário/tratamento farmacológico , Irradiação Corporal Total/efeitos adversos , Animais , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Primers do DNA , Doenças do Sistema Imunitário/etiologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/enzimologia , Baço/efeitos da radiação , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo
20.
Free Radic Biol Med ; 143: 560-572, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493505

RESUMO

Radiation induced damage to normal cells is a major shortcoming of conventional radiotherapy, which necessitates the development of novel radio-protective drugs. An ideal radio-modulator would protect normal cells while having cytotoxic effects on cancer cells. Plumbagin is a potent anti-tumour agent and has been shown to sensitize tumour cells to radiation-induced damage. In the present study, we have evaluated the radio-protective potential of plumbagin and found that it protected normal lymphocytes against radiation-induced apoptosis, but did not protect cancer cells against radiation. Plumbagin offered radioprotection even when it was added to cells after irradiation. The ability of only thiol based antioxidants to abrogate the radio-protective effects of plumbagin suggested a pivotal role of thiol groups in the radio-protective activity of plumbagin. Further, protein interaction network (PIN) analysis was used to predict the molecular targets of plumbagin. Based on the inputs from plumbagin's PIN and in light of its well-documented ability to modulate thiol groups, we proposed that plumbagin may act via modulation of caspase enzyme which harbours a critical catalytic cysteine. Indeed, plumbagin suppressed radiation-induced increase in homogenous caspase and caspase-3 activity in lymphocytes. Plumbagin also inhibited the activity of recombinant caspase-3 and mass spectrometric analysis revealed that plumbagin covalently interacts with caspase-3. Further, the in vivo radioprotective efficacy of plumbagin (single dose of 2mg/kg body weight) was demonstrated by its ability to rescue mice against radiation (7.5 Gy; Whole Body Irradiation) induced mortality. These results indicate that plumbagin prevents radiation induced apoptosis specifically in normal cells by inhibition of caspase-3 activity.


Assuntos
Caspase 3/metabolismo , Raios gama/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Linfócitos/enzimologia , Naftoquinonas/farmacologia , Protetores contra Radiação/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Caspase 3/genética , Proliferação de Células , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Camundongos , Oxirredução , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA