Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epileptic Disord ; 26(2): 215-218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031819

RESUMO

PACS2 pathogenic variants are associated with an autosomal dominant syndrome (OMIM DEE66), associating developmental and epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. However, no malformation of cortical development has been reported yet. We report here a seven-year-old child with a history of infantile epileptic spasm syndrome and a right insular polymicrogyria and pachygyria due to de novo PACS2 recurrent mutation c.625G>A (p.Glu209Lys). Our observation raises the question of the role of PACS2 in the cortical development. It also reminds the importance of cerebellar anomalies in the recognition of PACS-related DEE.


Assuntos
Epilepsia Generalizada , Epilepsia , Polimicrogiria , Criança , Humanos , Epilepsia/genética , Síndrome , Fenótipo , Mutação , Proteínas de Transporte Vesicular/genética
2.
Brain Commun ; 5(3): fcad174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324239

RESUMO

Brain-restricted somatic variants in genes of the mechanistic target of rapamycin signalling pathway cause focal epilepsies associated with focal cortical dysplasia type II. We hypothesized that somatic variants could be identified from trace tissue adherent to explanted stereoelectroencephalography electrodes used in the presurgical epilepsy workup to localize the epileptogenic zone. We investigated three paediatric patients with drug-resistant focal epilepsy subjected to neurosurgery. In the resected brain tissue, we identified low-level mosaic somatic mutations in AKT3 and DEPDC5 genes. We collected stereoelectroencephalography depth electrodes in the context of a second presurgical evaluation and identified 4/33 mutation-positive electrodes that were either located in the epileptogenic zone or at the border of the dysplasia. We provide the proof-of-concept that somatic mutations with low levels of mosaicism can be detected from individual stereoelectroencephalography electrodes and support a link between the mutation load and the epileptic activity. Our findings emphasize future opportunities for integrating genetic testing from stereoelectroencephalography electrodes into the presurgical evaluation of refractory epilepsy patients with focal cortical dysplasia type II to improve the patients' diagnostic journey and guide towards precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA