Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(23): 13374-13418, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967448

RESUMO

Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.

2.
J Am Chem Soc ; 146(12): 8677-8687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38472104

RESUMO

The nature of the Cu-Zn interaction and especially the role of Zn in Cu/ZnO catalysts used for methanol synthesis from CO2 hydrogenation are still debated. Migration of Zn onto the Cu surface during reaction results in a Cu-ZnO interface, which is crucial for the catalytic activity. However, whether a Cu-Zn alloy or a Cu-ZnO structure is formed and the transformation of this interface under working conditions demand further investigation. Here, ZnO/Cu2O core-shell cubic nanoparticles with various ZnO shell thicknesses, supported on SiO2 or ZrO2 were prepared to create an intimate contact between Cu and ZnO. The evolution of the catalyst's structure and composition during and after the CO2 hydrogenation reaction were investigated by means of operando spectroscopy, diffraction, and ex situ microscopy methods. The Zn loading has a direct effect on the oxidation state of Zn, which, in turn, affects the catalytic performance. High Zn loadings, resulting in a stable ZnO catalyst shell, lead to increased methanol production when compared to Zn-free particles. Low Zn loadings, in contrast, leading to the presence of metallic Zn species during reaction, showed no significant improvement over the bare Cu particles. Therefore, our work highlights that there is a minimum content of Zn (or optimum ZnO shell thickness) needed to activate the Cu catalyst. Furthermore, in order to minimize catalyst deactivation, the Zn species must be present as ZnOx and not metallic Zn or Cu-Zn alloy, which is undesirably formed during the reaction when the precatalyst ZnO overlayer is too thin.

3.
J Am Chem Soc ; 146(14): 9665-9678, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557016

RESUMO

The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649204

RESUMO

Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.

5.
J Am Chem Soc ; 145(5): 3016-3030, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716273

RESUMO

The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.

6.
J Am Chem Soc ; 145(39): 21465-21474, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726200

RESUMO

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

7.
Nano Lett ; 21(14): 5977-5983, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255526

RESUMO

Layered double hydroxides (LDHs) are a class of lamellar materials with a wide range of potential catalytic applications. LDHs form from positively charged 2D atomic layers separated by charge-balancing anions and solvent molecules. Typically, nanoscale LDH sheets can grow vertical or parallel to a substrate, exposing their different active facets. These two growth modes of LDH nanosheets have a significant impact on their electrocatalytic properties, yet the details of their growth remain unknown, hindering our ability to design and synthesize high-performance LDH-based electrocatalysts. Here, we investigate the growth pathways of LDH nanosheets using in situ electrochemical liquid-phase transmission electron microscopy (TEM) and show that the growth modes of LDH nanosheets can be controlled by tuning the precursor concentrations. Moreover, our observations reveal that LDH nanosheets grow via two pathways: (1) monomer addition, where the adatoms are heterogeneously deposited onto the LDH nanosheets, and (2) coalescence, where adjacent nanosheets merge together.

8.
Angew Chem Int Ed Engl ; 61(20): e202112640, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35243735

RESUMO

Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O2 2- ) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites.

9.
J Am Chem Soc ; 143(19): 7578-7587, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956433

RESUMO

In this study, we have taken advantage of a pulsed CO2 electroreduction reaction (CO2RR) approach to tune the product distribution at industrially relevant current densities in a gas-fed flow cell. We compared the CO2RR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 VRHE) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE, followed by 1 s pulses at -0.7 VRHE) and identified the main parameters responsible for the enhanced product selectivity observed in the latter case. Herein, two distinct regimes were observed: (i) for Ean = 0.9 VRHE we obtained 10% enhanced C2 product selectivity (FEC2H4 = 43.6% and FEC2H5OH = 19.8%) in comparison to the potentiostatic CO2RR at -0.7 VRHE (FEC2H4 = 40.9% and FEC2H5OH = 11%), (ii) while for Ean = 1.2 VRHE, high CH4 selectivity (FECH4 = 48.3% vs 0.1% at constant -0.7 VRHE) was observed. Operando spectroscopy (XAS, SERS) and ex situ microscopy (SEM and TEM) measurements revealed that these differences in catalyst selectivity can be ascribed to structural modifications and local pH effects. The morphological reconstruction of the catalyst observed after pulsed electrolysis with Ean = 0.9 VRHE, including the presence of highly defective interfaces and grain boundaries, was found to play a key role in the enhancement of the C2 product formation. In turn, pulsed electrolysis with Ean = 1.2 VRHE caused the consumption of OH- species near the catalyst surface, leading to an OH-poor environment favorable for CH4 production.

10.
Microsc Microanal ; 27(1): 121-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33403947

RESUMO

The development of microfabricated liquid cells has enabled dynamic studies of nanostructures within a liquid environment with electron microscopy. While such setups are most commonly found in transmission electron microscope (TEM) holders, their implementation in a scanning electron microscope (SEM) offers intriguing potential for multi-modal studies where the large chamber volume allows for the integration of multiple detectors. Here, we describe an electrochemical liquid cell SEM platform that employs the same cells enclosed by silicon nitride membrane windows found in liquid cell TEM holders and demonstrate the imaging of copper oxide nanoparticles in solution using both backscattered and transmitted electrons. In particular, the transmitted electron images collected at high scattering angles show contrast inversion at liquid layer thicknesses of several hundred nanometers, which can be used to determine the presence of liquid in the cell, while maintaining enough resolution to image nanoparticles that are tens of nanometers in size. Using Monte Carlo simulations, we show that both imaging modes have their advantages for liquid phase imaging and rationalize the contrast inversion observed in the transmitted electron image.

11.
J Am Chem Soc ; 142(10): 4932-4943, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32079395

RESUMO

Covalent organic frameworks are an emerging class of porous crystalline organic materials that can be designed and synthesized from the bottom up. Despite progress made in synthesizing COFs of diverse topologies, the synthesis methods are often tedious and unscalable, hampering practical applications. Herein, we demonstrate a scalable, robust method of producing highly crystalline acylhydrazone two-dimensional (2D) COFs with diversified structures (six examples) under open and stirred conditions, with growth typically completed in only 30 min. Our strategy involves selecting molecular building blocks that have bond dipole moments with spatial orientations that favor antiparallel stacking and whose structure allows the restriction of intramolecular bond rotation (RIR) via intra- and interlayer hydrogen bonding. This method is widely applicable for hydrazide linkers containing various side-chain functionalities and topicities. By this strategy, the gram-scale synthesis of two highly crystalline COFs (up to 1.4 g yield) was obtained in a one-pot reaction within 30 min.

12.
Nano Lett ; 19(5): 2871-2878, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932500

RESUMO

We can learn about the interactions between nanoparticles (NPs) in solution and solid surfaces by tracking how they move. Here, we use liquid cell transmission electron microscopy (TEM) to follow directly the translation and rotation of Au nanobipyramids (NBPs) and nanorods (NRs) adsorbed onto a SiN x surface at a rate of 300 frames per second. This study is motivated by the enduring need for a detailed description of NP motion on this common surface in liquid cell TEM. We will show that NPs move intermittently on the time scales of milliseconds. First, they rotate in two ways: (1) rotation around the center of mass and (2) pivoted rotation at the tips. These rotations also lead to different modes of translation. A NP can move through small displacements in the direction roughly parallel to its body axis (shuffling) or with larger steps via multiple tip-pivoted rotations. Analysis of the trajectories indicates that both displacements and rotation angles follow heavy-tailed power law distributions, implying anomalous diffusion. The spatial and temporal resolution afforded by our approach also revealed differences between the different NPs. The 50 nm NRs and 100 nm NBPs moved with a combination of shuffles and rotation-mediated displacements after illumination by the electron beam. With increasing electron fluence, 50 nm NRs also started to move via desorption-mediated jumps. The 70 nm NRs did not exhibit translational motion and only made small rotations. These results describe how NP dynamics evolve under the electron beam and how intermittent pinning and release at specific adsorption sites on the solid surface control NP motion at the liquid-solid interface. We also discuss the effect of SiN x surface treatment on NP motion, demonstrating how our approach can provide broader insights into interfacial transport.

13.
Angew Chem Int Ed Engl ; 59(50): 22667-22674, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32833290

RESUMO

Operando nuclear resonant inelastic X-ray scattering (NRIXS) and X-ray absorption fine-structure spectroscopy (XAFS) measurements were used to gain insight into the structure and surface composition of FeCu and FeAg nanoparticles (NPs) during the electrochemical CO2 reduction (CO2 RR) and to extract correlations with their catalytic activity and selectivity. The formation of a core-shell structure during CO2 RR for FeAg NPs was inferred from the analysis of the operando NRIXS data (phonon density of states, PDOS) and XAFS measurements. Electrochemical analysis of the FeAg NPs revealed a faradaic selectivity of 36 % for CO in 0.1 M KHCO3 at -1.1 V vs. RHE, similar to that of pure Ag NPs. In contrast, a predominant selectivity towards H2 evolution is obtained in the case of the FeCu NPs, analogous to the results obtained for pure Fe NPs, although small Cu NPs have also been shown to favor H2 production.

14.
Angew Chem Int Ed Engl ; 58(10): 3077-3081, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311403

RESUMO

A persistent challenge in classical photocatalyst systems with extended light absorption is the unavoidable trade-off between maximizing light harvesting and sustaining high photoredox capability. Alternatively, cooperative energy conversion through photothermic activation and photocatalytic redox is a promising yet unmet scientific proposition that critically demands a spectrum-tailored catalyst system. Here, we construct a solar thermal-promoted photocatalyst, an ultrathin "biphasic" ordered-disordered D-HNb3 O8 junction, which performs two disparate spectral selective functions of photoexcitation by ordered structure and thermal activated conversion via disordered lattice for combinatorial photothermal mediated catalysis. This in situ synthetically immobilized lattice distortion, constrained to a single-entity monolayer structure not only circumvents interfacial incompatibility but also triggers near-field temperature rise at the catalyst-reactant complexes' proximity to promote photoreaction. Ultimately, a generic full solar conversion improvement for H2 fuel production, organic transformation and water purification is realized.

15.
Acc Chem Res ; 50(6): 1303-1312, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28485945

RESUMO

Hierarchically organized nanoparticles (NPs) possess unique properties and are relevant to various technological applications. An important "bottom-up" strategy for building such hierarchical nanostructures is to guide the individual NPs into ordered nanoarchitectures using intermolecular interactions and external forces. However, our current understanding of the nanoscale interactions that govern such self-assembly processes usually relies on post-synthesis/assembly or indirect characterization. Theoretical models that can derive these interactions are presently constrained to systems with only a few particles or on short time scales. Hence, except for a number of special cases, a description that captures the detailed mechanisms of NP self-assembly still eludes us. By imaging the assembly of NPs in solution with subnanometer resolution and in real-time, in situ liquid cell transmission electron microscopy (LC-TEM) can identify previously unknown intermediate stages and improve our understanding of such processes. Here, we review recent studies where we explored NP self-assembly at different organization length scales using LC-TEM: (1) we followed the transformation of atoms into crystalline NPs in solution, (2) we highlighted the role of solvation forces on interaction dynamics between NPs, and (3) we described the assembly dynamics of NPs in solution. In the case of nanocrystal nucleation, we identified the existence of three distinct steps that lead to the formation of crystalline nuclei in solution. These steps are spinodal decomposition of the precursor solution into solute-rich and solute-poor liquid phases, nucleation of amorphous clusters within the solute-rich liquid phase, followed by crystallization of these amorphous clusters into crystalline NPs. The next question we ask is how NPs interact in solution once they form. It turns out that the hydration layer surrounding each NP acts as a repulsive barrier that prevents NPs from readily attaching to each other due to attractive vdW forces. Consequently, two interacting NPs form a metastable pair separated by their one water molecule thick hydration shell and they undergo attachment only when this water between them is drained. Next, we explore the self-assembly of many NP systems where the formation of linear chains from spherical NPs or nanorods (NRs) is mediated by linker molecules. At low linker concentration, both spherical NPs and NRs tend to form linear chains because of the need to reduce electrostatic repulsion between NP building blocks. When the concentration of linkers is increased, the attachment of NPs is no longer linear. For example, we find that two NRs undergo side-to-side assembly due to decreased electrostatic repulsion and the anisotropic distribution of linkers on NR surfaces at high linker concentration. Lastly, we look at the formation of NP nanorings directed by ethylenediaminetetraacetic acid (EDTA) nanodroplets in water. Our study shows that nanoring assemblies form via sequential attachment of NPs to binding sites located along the circumference of the EDTA nanodroplet, followed by rearrangement and reorientation of the attached NPs. Our approach based on real-time visualization of nanoscale processes not only reveals all the intermediate steps of NP assembly, but also provides quantitative description on the interactions between nanoscale objects in solution.

17.
J Am Chem Soc ; 138(16): 5190-3, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27043921

RESUMO

We study the overgrowth process of silver-on-gold nanocubes in dilute, aqueous silver nitrate solution in the presence of a reducing agent, ascorbic acid, using in situ liquid-cell electron microscopy. Au-Ag core-shell nanostructures were formed via two mechanistic pathways: (1) nuclei coalescence, where the Ag nanoparticles absorbed onto the Au nanocubes, and (2) monomer attachment, where the Ag atoms epitaxially deposited onto the Au nanocubes. Both pathways lead to the same Au-Ag core-shell nanostructures. Analysis of the Ag deposition rate reveals the growth modes of this process and shows that this reaction is chemically mediated by the reducing agent.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão/métodos , Prata/química , Nanotecnologia/métodos
18.
Microsc Microanal ; 20(2): 462-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24565052

RESUMO

One of the fundamental challenges in understanding the early stages of corrosion pitting in metals protected with an oxide film is that there are relatively few techniques that can probe microstructure with sufficient resolution while maintaining a wet environment. Here, we demonstrate that microstructural changes in Al thin films caused by aqueous NaCl solutions of varying chloride concentrations can be directly observed using a liquid flow cell enclosed within a transmission electron microscope (TEM) holder. In the absence of chloride, Al thin films did not exhibit significant corrosion when immersed in de-ionized water for 2 days. However, introducing 0.01 M NaCl solutions led to extensive random formation of blisters over the sample surface, while 0.1 M NaCl solutions formed anomalous structures that were larger than the typical grain size. Immersion in 1.0 M NaCl solutions led to fractal corrosion consistent with previously reported studies of Al thin films using optical microscopy. These results show the potential of in situ liquid cell electron microscopy for probing the processes that take place before the onset of pitting and for correlating pit locations with the underlying microstructure of the material.

19.
Adv Mater ; 36(4): e2307809, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994692

RESUMO

Electrochemical CO2 reduction (CO2 RR) is a rising technology, aiming to reduce the energy sector dependence on fossil fuels and to produce carbon-neutral raw materials. Metal-nitrogen-doped carbons (M-N-C) are emerging, cost-effective catalysts for this reaction; however, their long-term stability is a major issue. To overcome this, understanding their structural evolution is crucial, requiring systematic in-depth operando studies. Here a series of M-N-C catalysts (M = Fe, Sn, Cu, Co, Ni, Zn) is investigated using operando X-ray absorption spectroscopy. It is found that the Fe-N-C and Sn-N-C are prone to oxide clusters formation even before CO2 RR. In contrast, the respective metal cations are singly dispersed in the as-prepared Cu-N-C, Co-N-C, Ni-N-C, and (Zn)-N-C. During CO2 RR, metallic clusters/nanoparticles reversibly formed in all catalysts, except for the Ni-N-C. This phenomenon, previously observed only in Cu-N-C, thus is ubiquitous in M-N-C catalysts. The competition between M-O and M-N interactions is an important factor determining the mobility of metal species in M-N-C. Specifically, the strong interaction between the Ni centers and the N-functional groups of the carbon support results in higher stability of the Ni single-sites, leading to the excellent performance of Ni-N-C in the CO2 to CO conversion, in comparison to other transition metals.

20.
ACS Appl Mater Interfaces ; 16(9): 11552-11560, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408369

RESUMO

Bismuth is a catalyst material that selectively produces formate during the electrochemical reduction of CO2. While different synthesis strategies have been employed to create electrocatalysts with better performance, the restructuring of bismuth precatalysts during the reaction has also been previously reported. The mechanism behind the change has, however, remained unclear. Here, we show that Bi2O3 nanoparticles supported on Vulcan carbon intrinsically transform into stellated nanosheet aggregates upon exposure to an electrolyte. Liquid cell transmission electron microscopy observations first revealed the gradual restructuring of the nanoparticles into nanosheets in the presence of 0.1 M KHCO3 without an applied potential. Our experiments also associated the restructuring with solubility of bismuth in the electrolyte. While the consequent agglomerates were stable under moderate negative potentials (-0.3 VRHE), they dissolved over time at larger negative potentials (-0.4 and -0.5 VRHE). Operando Raman spectra collected during the reaction showed that under an applied potential, the oxide particles reduced to metallic bismuth, thereby confirming the metal as the working phase for producing formate. These results inform us about the working morphology of these electrocatalysts and their formation and degradation mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA