Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neuromodulation ; 25(6): 829-835, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33733515

RESUMO

OBJECTIVE: To assess use of directional stimulation in Parkinson's disease and essential tremor patients programmed in routine clinical care. MATERIALS AND METHODS: Patients with Parkinson's disease or essential tremor implanted at Cleveland Clinic with a directional deep brain stimulation (DBS) system from November 2017 to October 2019 were included in this retrospective case series. Omnidirectional was compared against directional stimulation using therapeutic current strength, therapeutic window percentage, and total electrical energy delivered as outcome variables. RESULTS: Fifty-seven Parkinson's disease patients (36 males) were implanted in the subthalamic nucleus (105 leads) and 33 essential tremor patients (19 males) were implanted in the ventral intermediate nucleus of the thalamus (52 leads). Seventy-four percent of patients with subthalamic stimulation (65% of leads) and 79% of patients with thalamic stimulation (79% of leads) were programmed with directional stimulation for their stable settings. Forty-six percent of subthalamic leads and 69% of thalamic leads were programmed on single segment activation. There was no correlation between the length of microelectrode trajectory through the STN and use of directional stimulation. CONCLUSIONS: Directional programming was more common than omnidirectional programming. Substantial gains in therapeutic current strength, therapeutic window, and total electrical energy were found in subthalamic and thalamic leads programmed on directional stimulation.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Núcleo Subtalâmico , Tremor Essencial/terapia , Humanos , Masculino , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiologia
2.
Neuromodulation ; 25(6): 817-828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34047410

RESUMO

OBJECTIVE: Published reports on directional deep brain stimulation (DBS) have been limited to small, single-center investigations. Therapeutic window (TW) is used to describe the range of stimulation amplitudes achieving symptom relief without side effects. This crossover study performed a randomized double-blind assessment of TW for directional and omnidirectional DBS in a large cohort of patients implanted with a DBS system in the subthalamic nucleus for Parkinson's disease. MATERIALS AND METHODS: Participants received omnidirectional stimulation for the first three months after initial study programming, followed by directional DBS for the following three months. The primary endpoint was a double-blind, randomized evaluation of TW for directional vs omnidirectional stimulation at three months after initial study programming. Additional data recorded at three- and six-month follow-ups included stimulation preference, therapeutic current strength, Unified Parkinson's Disease Rating Scale (UPDRS) part III motor score, and quality of life. RESULTS: The study enrolled 234 subjects (62 ± 8 years, 33% female). TW was wider using directional stimulation in 183 of 202 subjects (90.6%). The mean increase in TW with directional stimulation was 41% (2.98 ± 1.38 mA, compared to 2.11 ± 1.33 mA for omnidirectional). UPDRS part III motor score on medication improved 42.4% at three months (after three months of omnidirectional stimulation) and 43.3% at six months (after three months of directional stimulation) with stimulation on, compared to stimulation off. After six months, 52.8% of subjects blinded to stimulation type (102/193) preferred the period with directional stimulation, and 25.9% (50/193) preferred the omnidirectional period. The directional period was preferred by 58.5% of clinicians (113/193) vs 21.2% (41/193) who preferred the omnidirectional period. CONCLUSION: Directional stimulation yielded a wider TW compared to omnidirectional stimulation and was preferred by blinded subjects and clinicians.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estudos Cross-Over , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
3.
Neuromodulation ; 23(4): 469-477, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31423642

RESUMO

OBJECTIVE: A computational model that accounts for heterogeneous tissue properties was used to compare multiple independent current control (MICC), multi-stim set (MSS), and concurrent activation (co-activation) current steering technologies utilized in deep brain stimulation (DBS) on volume of tissue activated (VTA) and power consumption. METHODS: A computational model was implemented in Sim4Life v4.0 with the multimodal image-based detailed anatomical (MIDA) model, which accounts for heterogeneous tissue properties. A segmented DBS lead placed in the subthalamic nucleus (STN). Three milliamperes of current (with a 90 µs pseudo-biphasic waveform) was distributed between two electrodes with various current splits. The laterality, directional accuracy, volume, and shape of the VTAs using MICC, MSS and co-activation, and their power consumption were computed and compared. RESULTS: MICC, MSS, and coactivation resulted in less laterality of steering than single-segment activation. Both MICC and MSS show directional inaccuracy (more pronounced with MSS) during radial current steering. Co-activation showed greater directional accuracy than MICC and MSS at centerline between the two activated electrodes. MSS VTA volume was smaller and more compact with less current spread outside the active electrode plane than MICC VTA. There was no consistent pattern of power drain between MSS and MICC, but electrode co-activation always used less power than either fractionating paradigm. CONCLUSION: While current fractionalization technologies can achieve current steering between two segmented electrodes, this study shows that there are important limitations in accuracy and focus of tissue activation when tissue heterogeneity is accounted for.


Assuntos
Estimulação Encefálica Profunda/métodos , Análise de Elementos Finitos , Modelos Neurológicos , Humanos
4.
J Neurosci ; 38(22): 5111-5121, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29760182

RESUMO

Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20-30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait.SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20-30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.


Assuntos
Ritmo beta , Núcleo Subtalâmico/fisiopatologia , Caminhada , Estimulação Acústica , Idoso , Fenômenos Biomecânicos , Sinais (Psicologia) , Estimulação Encefálica Profunda , Eletrodos Implantados , Retroalimentação Psicológica , Feminino , Marcha/fisiologia , Calcanhar/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Desempenho Psicomotor
5.
Brain ; 140(1): 132-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007997

RESUMO

SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.


Assuntos
Estimulação Encefálica Profunda/métodos , Distonia/complicações , Tremor Essencial/terapia , Tálamo , Tremor/terapia , Acelerometria , Tremor Essencial/fisiopatologia , Humanos , Tremor/etiologia , Tremor/fisiopatologia
6.
Neuromodulation ; 21(2): 135-143, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28557242

RESUMO

BACKGROUND: Innovative neurosurgical treatments present a number of known risks, the natures and probabilities of which can be adequately communicated to patients via the standard procedures governing obtaining informed consent. However, due to their novelty, these treatments also come with unknown risks, which require an augmented approach to obtaining informed consent. OBJECTIVE: This paper aims to discuss and provide concrete procedural guidance on the ethical issues raised by serious unexpected complications of novel deep brain stimulation treatments. APPROACH: We illustrate our analysis using a case study of the unexpected development of recurrent stereotyped events in patients following the use of deep brain stimulation (DBS) to treat severe chronic pain. Examining these unexpected complications in light of medical ethical principles, we argue that serious complications of novel DBS treatments do not necessarily make it unethical to offer the intervention to eligible patients. However, the difficulty the clinician faces in determining whether the intervention is in the patient's best interests generates reasons to take extra steps to promote the autonomous decision making of these patients. CONCLUSION AND RECOMMENDATIONS: We conclude with clinical recommendations, including details of an augmented consent process for novel DBS treatment.


Assuntos
Dor Crônica/terapia , Estimulação Encefálica Profunda , Dor Crônica/psicologia , Tomada de Decisões , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/ética , Estimulação Encefálica Profunda/normas , Humanos
7.
J Neurosci ; 35(15): 5941-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878267

RESUMO

Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response.


Assuntos
Gânglios da Base/fisiologia , Potenciais Evocados/fisiologia , Transtornos Parkinsonianos/patologia , Núcleo Subtalâmico/fisiopatologia , Adulto , Idoso , Análise de Variância , Estimulação Encefálica Profunda/métodos , Feminino , Dedos/inervação , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Transtornos Parkinsonianos/terapia
8.
J Neurol Neurosurg Psychiatry ; 87(11): 1174-1182, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27516384

RESUMO

For patients with pharmacoresistant focal epilepsy in whom surgical resection of the epileptogenic focus fails or was not feasible in the first place, there were few therapeutic options. Increasingly, neurostimulation provides an alternative treatment strategy for these patients. Vagal nerve stimulation (VNS) is well established. Deep brain stimulation (DBS) and cortical responsive stimulation (CRS) are newer neurostimulation therapies with recently published long-term efficacy and safety data. In this literature review, we introduce these therapies to a non-specialist audience. Furthermore, we compare and contrast long-term (5-year) outcomes of newer neurostimulation techniques with the more established VNS. A search to identify all studies reporting long-term efficacy (>5 years) of VNS, CRS and DBS in patients with refractory focal/partial epilepsy was conducted using PubMed and Cochrane databases. The outcomes compared were responder rate, percentage seizure frequency reduction, seizure freedom, adverse events, neuropsychological outcome and quality of life. We identified 1 study for DBS, 1 study for CRS and 4 studies for VNS. All neurostimulation technologies showed long-term efficacy, with progressively better seizure control over time. Sustained improvement in quality of life measures was demonstrated in all modalities. Intracranial neurostimulation had a greater side effect profile compared with extracranial stimulation, though all forms of stimulation are safe. Methodological differences between the studies mean that direct comparisons are not straightforward. We have synthesised the findings of this review into a pragmatic decision tree, to guide the further management of the individual patient with pharmacoresistant focal-onset epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Epilepsias Parciais/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação do Nervo Vago/métodos , Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/psicologia , Epilepsias Parciais/psicologia , Humanos , Assistência de Longa Duração , Testes Neuropsicológicos , Qualidade de Vida , Resultado do Tratamento
9.
J Neurol Neurosurg Psychiatry ; 87(7): 717-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26424898

RESUMO

INTRODUCTION & OBJECTIVES: Adaptive deep brain stimulation (aDBS) uses feedback from brain signals to guide stimulation. A recent acute trial of unilateral aDBS showed that aDBS can lead to substantial improvements in contralateral hemibody Unified Parkinson's Disease Rating Scale (UPDRS) motor scores and may be superior to conventional continuous DBS in Parkinson's disease (PD). We test whether potential benefits are retained with bilateral aDBS and in the face of concurrent medication. METHODS: We applied bilateral aDBS in 4 patients with PD undergoing DBS of the subthalamic nucleus. aDBS was delivered bilaterally with independent triggering of stimulation according to the amplitude of ß activity at the corresponding electrode. Mean stimulation voltage was 3.0±0.1 volts. Motor assessments consisted of double-blinded video-taped motor UPDRS scores that included both limb and axial features. RESULTS: UPDRS scores were 43% (p=0.04; Cohen's d=1.62) better with aDBS than without stimulation. Motor improvement with aDBS occurred despite an average time on stimulation (ToS) of only 45%. Levodopa was well tolerated during aDBS and led to further reductions in ToS. CONCLUSION: Bilateral aDBS can improve both axial and limb symptoms and can track the need for stimulation across drug states.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Adulto , Idoso , Terapia Combinada , Dominância Cerebral/fisiologia , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Resultado do Tratamento , Gravação de Videoteipe
10.
Exp Brain Res ; 234(12): 3659-3667, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27566172

RESUMO

Loss of dopamine, a key modulator of synaptic signalling, and subsequent pulsatile non-physiological levodopa replacement is believed to underlie altered neuroplasticity in Parkinson's disease (PD). Animal models suggest that maladaptive plasticity (e.g. deficient depotentiation at corticostriatal synapses) is key in the development of levodopa-induced dyskinesia (LID), a common complication following levodopa replacement in PD. Human studies using transcranial magnetic stimulation protocols have shown similar depotentiation deficit in patients with LID. We hypothesized that subtle depotentiation deficits should precede LID if these deficits are mechanistically linked to LID onset. Moreover, patients on pulsatile levodopa-based therapy may show these changes earlier than those treated with levodopa-sparing strategies. We recruited 22 early non-dyskinetic PD patients (<5 years since diagnosis) and 12 age-matched healthy controls. We grouped patients into those on Levodopa-Based (n = 11) and Levodopa-Sparing therapies (n = 11). Patients were selected to obtain groups matched for age and disease severity. We used a theta-burst stimulation protocol to investigate potentiation and depotentiation in a single session. We report significant depotentiation deficits in the Levodopa-Based group, compared to both Levodopa-Sparing and Healthy Control groups. Potentiation and Depotentiation responses were similar between Levodopa-Sparing and Healthy Control groups. Although differences persist after accounting for potential confounds (e.g. levodopa-equivalent dose), these results may yet be caused by differences in disease severity and cumulative levodopa-equivalent dose as discussed in the text. In conclusion, we show for the first time that paradoxical facilitation in response to depotentiation protocols can occur in PD even prior to LID onset.


Assuntos
Discinesia Induzida por Medicamentos/patologia , Potencial Evocado Motor/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Córtex Motor/fisiopatologia , Idoso , Análise de Variância , Antiparkinsonianos/efeitos adversos , Biofísica , Estudos de Casos e Controles , Potencial Evocado Motor/efeitos dos fármacos , Feminino , Humanos , Levodopa/efeitos adversos , Masculino , Pessoa de Meia-Idade , Córtex Motor/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Ritmo Teta , Estimulação Magnética Transcraniana
11.
Brain ; 137(Pt 12): 3223-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25200741

RESUMO

Tremor is a cardinal feature of Parkinson's disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient's own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson's disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50-77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34-74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson's disease, P=0.0078, subthalamic stimulation in Parkinson's disease, P=0.0312; ventrolateral thalamic stimulation in essential tremor, P=0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P=0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Tálamo/fisiopatologia , Tremor/terapia , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/terapia , Doença de Parkinson/fisiopatologia , Resultado do Tratamento , Tremor/fisiopatologia
12.
Neuromodulation ; 18(5): 349-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25879998

RESUMO

OBJECTIVES: Rest tremor is a cardinal symptom of Parkinson's disease (PD), and is readily suppressed by deep brain stimulation (DBS) of the subthalamic nucleus (STN). The therapeutic effect of the latter on bradykinesia and rigidity has been associated with the suppression of exaggerated beta (13-30 Hz) band synchronization in the vicinity of the stimulating electrode, but there is no correlation between beta suppression and tremor amplitude. In the present study, we investigate whether tremor suppression is related to suppression of activities at other frequencies. MATERIALS AND METHODS: We recorded hand tremor and contralateral local field potential (LFP) activity from DBS electrodes during stimulation of the STN in 15 hemispheres in 11 patients with PD. DBS was applied with increasing voltages starting at 0.5 V until tremor suppression was achieved or until 4.5 V was reached. RESULTS: Tremor was reduced to 48.9% ± 10.9% of that without DBS once stimulation reached 2.5-3 V (t14 = -4.667, p < 0.001). There was a parallel suppression of low gamma (31-45 Hz) power to 92.5% ± 3% (t14 = -2.348, p = 0.034). This was not seen over a band containing tremor frequencies and their harmonic (4-12 Hz), or over the beta band. Moreover, low gamma power correlated with tremor severity (mean r = 0.43 ± 0.14, p = 0.008) within subjects. This was not the case for LFP power in the other two bands. CONCLUSIONS: Our findings support a relationship between low gamma oscillations and PD tremor, and reinforce the principle that the subthalamic LFP is a rich signal that may contain information about the severity of multiple different Parkinsonian features.


Assuntos
Estimulação Encefálica Profunda/métodos , Potenciais Evocados/fisiologia , Ritmo Gama/fisiologia , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Tremor/etiologia , Tremor/terapia , Idoso , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Estatística como Assunto , Resultado do Tratamento
13.
Brain Stimul ; 16(3): 867-878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37217075

RESUMO

OBJECTIVE: Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30-40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged as a potential therapy for persistent disabling disease, however it has not yet gained widespread adoption. In 2016, the American Society for Stereotactic and Functional Neurosurgery (ASSFN) convened a meeting with leaders in the field to discuss a roadmap for the path forward. A follow-up meeting in 2022 aimed to review the current state of the field and to identify critical barriers and milestones for progress. DESIGN: The ASSFN convened a meeting on June 3, 2022 in Atlanta, Georgia and included leaders from the fields of neurology, neurosurgery, and psychiatry along with colleagues from industry, government, ethics, and law. The goal was to review the current state of the field, assess for advances or setbacks in the interim six years, and suggest a future path forward. The participants focused on five areas of interest: interdisciplinary engagement, regulatory pathways and trial design, disease biomarkers, ethics of psychiatric surgery, and resource allocation/prioritization. The proceedings are summarized here. CONCLUSION: The field of surgical psychiatry has made significant progress since our last expert meeting. Although weakness and threats to the development of novel surgical therapies exist, the identified strengths and opportunities promise to move the field through methodically rigorous and biologically-based approaches. The experts agree that ethics, law, patient engagement, and multidisciplinary teams will be critical to any potential growth in this area.


Assuntos
Estimulação Encefálica Profunda , Transtornos Mentais , Neurocirurgia , Psicocirurgia , Humanos , Estados Unidos , Procedimentos Neurocirúrgicos , Transtornos Mentais/cirurgia
14.
Exp Brain Res ; 223(1): 43-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941316

RESUMO

Brain-derived neurotrophic factor (BDNF) plays an important role in learning, memory, and brain plasticity. Humans with a val66met polymorphism in the BDNF gene have reduced levels of BDNF and alterations in motor learning and short-term cortical plasticity. In the current study, we sought to further explore the role of BDNF in motor learning by testing human subjects on a visuomotor adaptation task. In experiment 1, 21 subjects with the polymorphism (val/met) and 21 matched controls (val/val) were tested during learning, short-term retention (45 min), long-term retention (24 h), and de-adaptation of a 60° visuomotor deviation. We measured both mean error as well as rate of adaptation during each session. There was no difference in mean error between groups; however, val/met subjects had a reduced rate of adaptation during learning as well as during long-term retention, but not short-term retention or de-adaptation. In experiment 2, 12 val/met and 12 val/val subjects were tested on a larger 80° deviation, revealing a more pronounced difference in mean error during adaptation than the 60° deviation. These results suggest that BDNF may play an important role in visuomotor adaptive processes in the human.


Assuntos
Adaptação Fisiológica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Aprendizagem/fisiologia , Polimorfismo Genético/genética , Substituição de Aminoácidos , Análise de Variância , Interpretação Estatística de Dados , Feminino , Genótipo , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
15.
Cereb Cortex ; 21(7): 1627-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21127013

RESUMO

Intermittent theta burst stimulation (iTBS) transiently increases motor cortex excitability in healthy humans by a process thought to involve synaptic long-term potentiation (LTP), and this is enhanced by nicotine. Acquisition of a ballistic motor task is likewise accompanied by increased excitability and presumed intracortical LTP. Here, we test how iTBS and nicotine influences subsequent motor learning. Ten healthy subjects participated in a double-blinded placebo-controlled trial testing the effects of iTBS and nicotine. iTBS alone increased the rate of learning but this increase was blocked by nicotine. We then investigated factors other than synaptic strengthening that may play a role. Behavioral analysis and modeling suggested that iTBS increased performance variability, which correlated with learning outcome. A control experiment confirmed the increase in motor output variability by showing that iTBS increased the dispersion of involuntary transcranial magnetic stimulation-evoked thumb movements. We suggest that in addition to the effect on synaptic plasticity, iTBS may have facilitated performance by increasing motor output variability; nicotine negated this effect on variability perhaps via increasing the signal-to-noise ratio in cerebral cortex.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Estimulação Acústica/métodos , Adulto , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Córtex Motor/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Estimulação Luminosa/métodos , Desempenho Psicomotor/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos
16.
Sci Rep ; 12(1): 2269, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145143

RESUMO

Treating chronic symptoms for pain and movement disorders with neuromodulation therapies involves fine-tuning of programming parameters over several visits to achieve and maintain symptom relief. This, together with challenges in access to trained specialists, has led to a growing need for an integrated wireless remote care platform for neuromodulation devices. In March of 2021, we launched the first neuromodulation device with an integrated remote programming platform. Here, we summarize the biodesign steps taken to identify the unmet patient need, invent, implement, and test the new technology, and finally gain market approval for the remote care platform. Specifically, we illustrate how agile development aligned with the evolving regulatory requirements can enable patient-centric digital health technology in neuromodulation, such as the remote care platform. The three steps of the biodesign process applied for remote care platform development are: (1) Identify, (2) Invent, and (3) Implement. First, we identified the unmet patient needs through market research and voice-of-customer (VOC) process. Next, during the concept generation phase of the invention step, we integrated the results from the VOC into defining requirements for prototype development. Subsequently, in the concept screening phase, ten subjects with PD participated in a clinical pilot study aimed at characterizing the safety of the remote care prototype. Lastly, during the implementation step, lessons learned from the pilot experience were integrated into final product development as new features. Following final product development, we completed usability testing to validate the full remote care system and collected preliminary data from the limited market release experience. The VOC data, during prototype development, helped us identify thresholds for video quality and needs priorities for clinicians and patients. During the pilot study, one subject reported anticipated remote-care-related adverse events that were resolved without sequelae. For usability analysis following final product development, the failure rates for task completion for both user groups were about 1%. Lastly, during the initial 4 weeks of the limited market release experience, a total of 858 remote care sessions were conducted with a 93% success rate. Overall, we developed a remote care platform by adopting a user-centric approach. Although the system intended to address pre-COVID19 challenges associated with disease management, the unforeseen overlap of the study with the pandemic elevated the importance of such a system and an innovative development process enabled us to advance a patient-centric platform to gain regulatory approval and successfully launch the remote care platform to market.

17.
Parkinsonism Relat Disord ; 96: 38-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151948

RESUMO

INTRODUCTION: Outcomes after deep brain stimulation (DBS) therapy are dependent on good surgical placement in the target nucleus and optimized stimulation parameters through multiple programming sessions. This often requires frequent travel to a specialized DBS center, which presents a challenge for those with limited access. Recently, the FDA approved a remote tele-programming solution for DBS. To determine if remote tele-programming of DBS systems is beneficial and useful for Parkinson's Disease (PD) patients, Parkinson's Foundation hosted a survey in collaboration with Abbott Labs. METHODS: The survey was conducted to assess the need for telemedicine among PD patients with DBS and the usability of the telehealth interface for DBS teleprogramming. The survey included two validated instruments: The Effective Accessibility and Accommodation survey (EAA) and the Telehealth Usability Questionnaire (TUQ). RESULTS: 47 patients completed the EAA and 41 completed the TUQ. Results from the EAA revealed more than a third of PD patients cannot easily get to a clinic for various reasons, and more than a quarter reported difficulty contacting their clinic for advice. Results from the TUQ revealed overall satisfaction with the DBS remote programming telehealth interface and care provided. The majority of respondents reported that remote tele-programming visits are similar in quality to in-person visits. CONCLUSION: This study provides support for the use of telehealth and tele-programming for DBS management in PD patients. The ability to use remote technologies for care will increase access to DBS and mitigate the disparities that currently prevent access to care.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Telemedicina , Estimulação Encefálica Profunda/métodos , Estudos de Viabilidade , Humanos , Doença de Parkinson/terapia , Telemedicina/métodos , Resultado do Tratamento
18.
Mov Disord Clin Pract ; 9(6): 775-784, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35937489

RESUMO

Background: Despite over 30 years of clinical experience, high-quality studies on the efficacy of bilateral versus unilateral deep brain stimulation (DBS) of the ventral intermediate (VIM) nucleus of the thalamus for medically refractory essential tremor (ET) remain limited. Objectives: To compare benefits and risks of bilateral versus unilateral VIM DBS using the largest ET DBS clinical trial dataset available to date. Methods: Participants from the US St. Jude/Abbott pivotal ET DBS trial who underwent staged-bilateral VIM implantation constituted the primary cohort in this sub-analysis. Their assessments "on" DBS at six months after second-side VIM DBS implantation were compared to the assessments six months after unilateral implantation. Two control cohorts of participants with unilateral implantation only were also used for between-group comparisons. Results: The primary cohort consisted of n = 38 ET patients (22M/16F; age of 65.3 ± 9.5 years). The second side VIM-DBS resulted in a 29.6% additional improvement in the total motor CRST score (P < 0.001), with a 64.1% CRST improvement in the contralateral side (P < 0.001). An added improvement was observed in the axial tremor score (21.4%, P = 0.005), and CRST part B (24.8%, P < 0.001) score. Rate of adverse events was slightly higher after bilateral stimulation. Conclusions: In the largest ET DBS study to date, staged-bilateral VIM DBS was a highly effective treatment for ET with bilateral implantation resulting in greater reduction in total motor tremor scores when compared to unilateral stimulation alone.

20.
Front Neurol ; 12: 785280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925219

RESUMO

Objective: There have been significant improvements in the design and manufacturing of deep brain stimulation (DBS) systems, but no study has considered the impact of modern systems on complications. We sought to compare the relative occurrence of reoperations after de novo implantation of modern and traditional DBS systems in patients with Parkinson's disease (PD) or essential tremor (ET) in the United States. Design: Retrospective, contemporaneous cohort study. Setting: Multicenter data from the United States Centers for Medicare and Medicaid Services administrative claims database between 2016 and 2018. Participants: This population-based sample consisted of 5,998 patients implanted with a DBS system, of which 3,869 patients had a de novo implant and primary diagnosis of PD or ET. Follow-up of 3 months was available for 3,810 patients, 12 months for 3,561 patients, and 24 months for 1,812 patients. Intervention: Implantation of a modern directional (MD) or traditional omnidirectional (TO) DBS system. Primary and Secondary Outcome Measures: We hypothesized that MD systems would impact complication rates. Reoperation rate was the primary outcome. Associated diagnoses, patient characteristics, and implanting center details served as covariates. Kaplan-Meier analysis was performed to compare rates of event-free survival and regression models were used to determine covariate influences. Results: Patients implanted with modern systems were 36% less likely to require reoperation, largely due to differences in acute reoperations and intracranial lead reoperations. Risk reduction persisted while accounting for practice differences and implanting center experience. Risk reduction was more pronounced in patients with PD. Conclusions: In the first multicenter analysis of device-related complications including modern DBS systems, we found that modern systems are associated with lower reoperation rates. This risk profile should be carefully considered during device selection for patients undergoing DBS for PD or ET. Prospective studies are needed to further investigate underlying causes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA