Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012311

RESUMO

Pancreatic adenocarcinoma (PDAC) has low survival rates worldwide due to its tendency to be detected late and its characteristic desmoplastic reaction, which slows the use of targeted therapies. As such, the discovery of new connections between genes and the clinicopathological parameters contribute to the search for new biomarkers or targets for therapy. Transient receptor potential (TRP) channels are promising tools for cancer therapy or markers for PDAC. Therefore, in this study, we selected several genes encoding TRP proteins previously reported in cellular models, namely, Transient Receptor Potential Cation Channel Subfamily V Member 6 (TRPV6), Transient receptor potential ankyrin 1 (TRPA1), and Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), as well as the TRPM8 Channel Associated Factor 1 (TCAF1) and TRPM8 Channel Associated Factor 2 (TCAF2) proteins, as regulatory factors. We analyzed the expression levels of tumors from patients enrolled in public datasets and confirmed the results with a validation cohort of PDAC patients enrolled in the Clinical Institute Fundeni, Romania. We found significantly higher expression levels of TRPA1, TRPM8, and TCAF1/F2 in tumoral tissues compared to normal tissues, but lower expression levels of TRPV6, suggesting that TRP channels have either tumor-suppressive or oncogenic roles. The expression levels were correlated with the tumoral stages and are related to the genes involved in calcium homeostasis (Calbindin 1 or S100A4) or to proteins participating in metastasis (PTPN1). We conclude that the selected TRP proteins provide new insights in the search for targets and biomarkers needed for therapeutic strategies for PDAC treatment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Adenocarcinoma/patologia , Humanos , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Neoplasias Pancreáticas
2.
Sci Rep ; 11(1): 2018, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479347

RESUMO

The transient receptor potential ankyrin type 1 (TRPA1) channel belongs to the TRP superfamily of ion channels. TRPA1 is a membrane protein with multiple functions able to respond to noxious stimuli, reactive oxygen species, inflammatory cytokines or pungent substances, and it participates in pain signalling, taste, inflammation and various steps of the tumorigenic process. To date, no reports have addressed the expression and function of TRPA1 in pancreatic ductal adenocarcinoma (PDAC) cells. This work reports the endogenous expression of TRPA1 channels in human pancreatic adenocarcinoma cell lines and provides insights into the function of the TRPA1 protein in the Panc-1 cell line. This study reports that cell lines isolated from PDAC patients had different levels of TRPA1 expression. The channel activity in Panc-1 cells, as assessed with electrophysiological (whole-cell patch clamp) and microfluorimetry methods, showed that non-selective cationic currents were activated by allyl isothiocyanate (AITC) in Panc-1 cells and inhibited by the selective TRPA1 antagonist A-967079. The current elicited by the specific agonist was associated with a robust increase in intracellular Ca2+. Furthermore, siRNA-induced downregulation of TRPA1 enhanced cell migration in the wound healing assay, indicating a possible role of ion channels independent from pore function. Finally, TRPA1 activation changed the cell cycle progression. Taken together, these results support the idea of channel-dependent and independent role for TRPA1 in tumoral processes.


Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Canal de Cátion TRPA1/genética , Adenocarcinoma/patologia , Cálcio/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Fenômenos Eletrofisiológicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oximas/farmacologia , Técnicas de Patch-Clamp , Canal de Cátion TRPA1/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA