RESUMO
The thermoelectric performance of the CuSbS2 monolayer is determined using the relaxation times obtained from electron-phonon coupling calculations and the transport properties of phonons and electrons. Based on the fully relaxed structure, the lattice thermal conductivity and the electronic transport coefficients are evaluated by solving the Boltzmann transport equation for phonons and electrons under relaxation time approximation, respectively. The tendencies of the transport coefficients depending on the carrier concentrations and temperatures are studied to understand the thermoelectric performance. Based on the bipolar effect, the transport coefficients and intrinsic carrier concentrations, we determined the dimensionless figure of merit ZT in the 300-800 K range. The results demonstrate that the CuSbS2 monolayer should be an p-type semiconductor, and the maximum ZT of 1.36 is obtained, indicating that the monolayer is a good candidate for high-temperature thermoelectric devices. Substantial bipolar effects are observed, and the ones in the x-direction are stronger in comparison to those in the y-direction, which is responsible for the smaller ZT in the x-direction.
RESUMO
This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.
RESUMO
BACKGROUND: To assess repeatability and reproducibility of corneal epithelium thickness (ET) measured by a spectral-domain optical coherence tomographer (SD-OCT)/Placido topographer (MS-39, CSO, Florence, Italy) in keratoconus (KC) population at different stages, as well as to determine the progression limits for evaluating KC progression. METHODS: A total of 149 eyes were enrolled in this study, with 29 eyes in the forme fruste keratoconus (FFKC) group, 34 eyes in the mild KC group, 40 eyes in the moderate KC group, and 46 eyes in the severe KC group. Employing the within-subject standard deviation (Sw), test-retest variability (TRT), coefficient of variation (CoV), and intraclass correlation coefficient (ICC) to evaluate intraoperator repeatability and interoperator reproducibility. RESULTS: The repeatability and reproducibility of MS-39 in patients with KC were acceptable, according to ICC values ranging from 0.732 to 0.954. However, patients with more severe KC and progressive peripheralization of the measurement points had higher TRTs but a thinning trend. The current study tended to set the cut-off values of mild KC, moderate KC, and severe KC to 4.9 µm, 5.2 µm, and 7.4 µm for thinnest epithelium thickness (TET). When differences between follow-ups are higher than those values, progression of the disease is possible. As for center epithelium thickness (CET), cut-off values for mild KC, moderate KC, and severe KC should be 2.8 µm, 4.4 µm, and 5.3 µm. This might be useful in the follow-up and diagnosis of keratoconus. CONCLUSIONS: This study demonstrated that the precision of MS-39 was reduced in measuring more severe KC patients and more peripheral corneal points. In determining disease progression, values should be differentiated between disease-related real changes and measurement inaccuracies. Due to the large difference in ET measured by MS-39 between various stages of disease progression, it is necessary to accurately grade KC patients to avoid errors in KC clinical decision-making.
RESUMO
Glaucoma affects approximately 80 million individuals worldwide, a condition for which current treatment options are inadequate. The primary risk factor for glaucoma is elevated intraocular pressure. Intraocular pressure is determined by the balance between the secretion and outflow of aqueous humor. Here we show that using the RNA interference tool CasRx based on shH10 adenovirus-associated virus can reduce the expression of the aqueous humor circulation related genes Rock1 and Rock2, as well as aquaporin 1 and ß2 adrenergic receptor in female mice. This significantly reduced intraocular pressure in female mice and provided protection to the retina ganglion cells, ultimately delaying disease progression. In addition, we elucidated the mechanisms by which the knockdown of Rock1 and Rock2, or aquaporin 1 and ß2 adrenergic receptor in female mice, reduces the intraocular pressure and secures the retina ganglion cells by single-cell sequencing.
Assuntos
Aquaporina 1 , Sistemas CRISPR-Cas , Glaucoma , Pressão Intraocular , Células Ganglionares da Retina , Quinases Associadas a rho , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Feminino , Aquaporina 1/metabolismo , Aquaporina 1/genética , Camundongos , Glaucoma/genética , Glaucoma/metabolismo , Humor Aquoso/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Interferência de RNA , HumanosRESUMO
In this study, a novel customized corneal cross-linking (CXL) treatment is explored that utilizes microneedles (MNs) for targeted riboflavin (RF) administration prior to the CXL procedure. Unlike the conventional "one-size-fits-all" approach, this protocol offers an option for more precise and efficacious treatment. To simulate a customized corneal crosslinking technique, four distinct microneedle (MN) molds designs, including circular, semi-circular, annular and butterfly shaped, are crafted for loading an optimized RF-hyaluronic acid solution and for the subsequent fabrication of MN arrays with varying morphologies. These MNs can gently puncture the corneal epithelium while preserving the integrity of the underlying stromal layer. Following the application of these microneedles, RF solution is replenished to enhance the RF content within the stroma through the punctures created by the MNs, resulting in exceptional customized corneal cross-linking effects that are comparable to the conventional epi-off CXL protocol. Additionally, it flattened the corneal curvature within the treated zone and facilitated rapid postoperative recovery of corneal tissue. These findings suggest that the integration of customized microneedle RF delivery with corneal crosslinking technology represents a potential novel treatment modality, holding promise for the tailored treatment of corneal pathologies, and offering a more precise and efficient alternative to traditional methods.
RESUMO
Uveitis is a complex ocular inflammatory disease with a multifactorial etiology that can result in blindness. Although corticosteroid eye drops are the primary treatment for anterior uveitis, their efficacy is limited by low bioavailability, adverse effects, and a narrow focus on inflammation. In this study, the multifunctional hydrogel eye drops (designated as DCFH) were developed by incorporating the anti-inflammatory agent dexamethasone (DSP) and reactive oxygen species (ROS) scavenger cerium-based metal-organic frameworks (Ce-MOFs) into thermosensitive triblock copolymer F127 for the synergistic treatment against uveitis. The resulting F127 eye drops offer a favorable alternative to ophthalmic solution due to its thermosensitivity, thixotropy, light transmittance, improved ocular bioavailability, and unexpected anti-inflammatory efficacy. Notably, the participation of nanoporous Ce-MOFs, functional drug carriers, not only reduces ROS level but also boosts the anti-inflammatory activity of DSP in vitro. Therapeutically, the multifunctional DCFH exhibits superior efficacy in treating endotoxin-induced uveitis by mitigating the ophthalmic inflammatory reaction, suppressing inflammatory cytokines (e.g., TNF-α, IL-6, and IL-17) and downregulating the expression of iNOS and NLPR3. This synergistic treatment provides a valuable and promising approach for the management of uveitis and other ocular inflammatory conditions.