Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769013

RESUMO

Zwitterionic materials are widely applied in the biomedical field due to their excellent antimicrobial, non-cytotoxicity, and antifouling properties but have never been applied in bone tissue engineering. In this study, we synthesized a novel zwitterionic hydrogel incorporated with graphene oxide (GO) using maleic anhydride (MA) as a cross-linking agent by grafted L-cysteine (L-Cys) as the zwitterionic material on maleilated chitosan via click chemistry. The composition and each reaction procedure of the novel zwitterionic hydrogel were characterized via X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FT-IR), while the morphology was imaged by scanning electron microscope (SEM). In vitro cell studies, CCK-8 and live/dead assay, alkaline phosphatase activity, W-B, and qRT-CR tests showed zwitterionic hydrogel incorporated with GO remarkably enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs); it is dose-dependent, and 2 mg/mL GO is the optimum concentration. In vivo tests also indicated the same results. Hence, these results suggested the novel zwitterionic hydrogel exhibited porous characteristics similar to natural bone tissue. In conclusion, the zwitterionic scaffold has highly biocompatible and mechanical properties. When GO was incorporated in this zwitterionic scaffold, the zwitterionic scaffold slows down the release rate and reduces the cytotoxicity of GO. Zwitterions and GO synergistically promote the proliferation and osteogenic differentiation of rBMSCs in vivo and in vitro. The optimal concentration is 2 mg/mL GO.


Assuntos
Grafite , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Osso e Ossos , Grafite/farmacologia , Grafite/química , Diferenciação Celular , Alicerces Teciduais
2.
Nanomedicine ; 33: 102348, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33321215

RESUMO

Atherosclerosis can lead to most cardiovascular diseases. Although some biomimetic nanomaterials coated by macrophage membranes have been reported in previous studies of atherosclerosis, to our knowledge, no studies regarding the detection of early lesions of atherosclerosis (foam cells) using such a strategy have yet been reported. In the present study, Fe3O4 biomimetic nanoparticles coated with a macrophage membrane (Fe3O4@M) were prepared to investigate the imaging effect on the early lesions of atherosclerosis (foam cells). The results showed that the Fe3O4@M particles are spheres with average diameters of approximately 300 nm. T1 and T2 relaxation values showed that the ratio of r2 to r1 was 26.09. The protein content accounted for approximately 27% of the total weight in Fe3O4@M, and Fe3O4@M nanoparticles exhibited high biosafety. Further testing showed that Fe3O4@M effectively targets early atherosclerotic lesions by the specific recognition of integrin α4ß1 to VCAM-1. Taken together, Fe3O4@M is a promising contrast agent for the diagnosis of early stage atherosclerosis.


Assuntos
Materiais Biomiméticos/química , Meios de Contraste/química , Nanopartículas de Magnetita/química , Animais , Aterosclerose , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Macrófagos/química , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Células RAW 264.7 , Propriedades de Superfície , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Stress ; 23(1): 87-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31311393

RESUMO

Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly. The effects of stress hormones on immune cell CKA were also investigated under two in vitro co-incubation conditions, with all three hormones found to exert inhibitory effects on the CKA of PMNs and mononuclear cells. We showed that stress triggered the release of stress hormones which had profound inhibitory effects on the innate anticancer functions of PMNs. These results provide a possible explanation for the relationship between psychological stress and cancer incidence.


Assuntos
Granulócitos/fisiologia , Neoplasias/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Epinefrina/sangue , Epinefrina/fisiologia , Humanos , Hidrocortisona/sangue , Hidrocortisona/fisiologia , Norepinefrina/sangue , Norepinefrina/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38713259

RESUMO

With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively. This study explores and evaluates safety and potential mechanism of DHA towards human hepatocarcinoma based on network pharmacology in a comprehensive way. Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of DHA were evaluated with pkCSM, SwissADME, and ADMETlab. Potential targets of DHA were obtained from SwissTargetPrediction, Drugbank, TargetNET, and PharmMapper. Target gene of hepatocarcinoma was obtained from OMIM, GeneCards, and DisGeNET. Overlapping targets and hub genes were identified and analyzed for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway. Molecular docking was utilized to investigate the interactions sites and hydrogen bonds. Cell counting kit-8 (CCK8), wound healing, invasion, and migration assays on HepG2 and SNU387 cell proved DHA inhibits malignant biological features of hepatocarcinoma cell. DHA is safe and desirable for clinical application. A total of 131 overlapping targets were identified. Biofunction analysis showed targets were involved in kinase activity, protein phosphorylation, intracellular reception, signal transduction, transcriptome dysregulation, PPAR pathway, and JAK-STAT signaling axis. Top 9 hub genes were obtained using MCC (Maximal Clique Centrality) algorithm, namely CDK1, CCNA2, CCNB1, CCNB2, KIF11, CHEK1, TYMS, AURKA, and TOP2A. Molecular docking suggests that all hub genes form a stable interaction with DHA for optimal binding energy were all less than - 5 kcal/mol. Dihydroartemisinin might be a potent and safe anticarcinogen based on its biological safety and effective therapeutic effect.

5.
Pathol Res Pract ; 258: 155357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772116

RESUMO

Member of the V-type ATPase family have attracted vast attention in tumor progression. Nevertheless, the specific member of V-ATPase, ATP6V1C2, its regulatory function in colorectal cancer (CRC) progression was poorly understood. In this study, comprehensive analyses demonstrated the role of ATP6V1C2 in CRC progression and drug screening based on ATP6V1C2 was carried out. As a result, among the ATPV1s family, ATP6V1C2 was significantly highly expressed in CRC. Immuno-infiltration analysis suggests that, the interaction between CRC cells and immune cells resulting in reduced immune and estimate scores. GSEA analysis found that, ATP6V1C2 negatively correlates with immune cells,especially CD8T cells. Next, Ecotyper database queries indicated that ATP6V1C2 was negatively correlates with characteristic gene expression in CD8T cells. Then, COX regression analysis and survival curves made it clear that ATP6V1C2 is positively correlates with clinicopathological progression leading to poor CRC prognosis. CellMiner explore told us LOR-253 and Sonidegib may be effective in CRC cancer treatment. Molecular Docking between ATP6V1C2 and 9 first-line and 9 natural drugs showed that ATP6V1C2 was recognized by the best geometrical and energetic matching pattern of 2 First-line and 4 natural drugs. RT-PCR and immunoblotting confirmed that ATP6V1C2 was significantly overexpressed in CRC. Four natural drugs screened by molecular docking were effective in cell proliferation inhibition by CCK8 test. In summary, ATP6V1C2 may be a new therapeutic target for CRC. The illustration is shown in Figure 9.


Assuntos
Neoplasias Colorretais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Desenvolvimento de Medicamentos , Simulação de Acoplamento Molecular , Prognóstico
6.
Med Oncol ; 40(11): 322, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801170

RESUMO

The research of nanomaterials for bio-imaging and theranostic are very active nowadays with unprecedented advantages in nanomedicine. Homologous targeting and bio-imaging greatly improve the ability of targeted drug delivery and enhance active targeting and treatment ability of nanomedicine for the tumor. In this work, lycorine hydrochloride (LH) and magnetic iron oxide nanoparticles coated with a colorectal cancer (CRC) cell membrane (LH-Fe3O4@M) were prepared, for homologous targeting, magnetic resonance imaging (MRI), and chemotherapy. Results showed that the LH-Fe3O4@M and Fe3O4@M intensity at HT29 tumor was significantly higher than that Fe3O4@PEG, proving the superior selectivity of cancer cell membrane-camouflaged nanomedicine for homologous tumors and the MRI effect of darkening contrast enhancement were remarkable at HT29 tumor. The LH-Fe3O4@M exhibited excellent chemotherapy effect in CRC models as well as LH alone and achieved a high tumor ablation rate but no damage to normal tissues and cells. Therefore, our biomimetic system achieved a homologous targeting, bio-imaging, and efficient therapeutic effect of CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas de Magnetita , Nanopartículas , Humanos , Linhagem Celular Tumoral , Óxidos , Biomimética , Imageamento por Ressonância Magnética/métodos , Membrana Celular , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico
7.
Front Immunol ; 14: 1070679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817446

RESUMO

Introduction: In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone. Methods and results: After screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo. Discussion: In future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.


Assuntos
Ginsenosídeos , Neoplasias , Camundongos , Animais , Metaloproteinase 1 da Matriz , Norepinefrina , Ginsenosídeos/farmacologia , Adjuvantes Imunológicos , Granulócitos/metabolismo , Neoplasias/tratamento farmacológico , RNA Mensageiro , Desmocolinas
8.
Front Genet ; 14: 1163162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476411

RESUMO

Sarcopenia and osteoporosis, two degenerative diseases in older patients, have become severe health problems in aging societies. Muscles and bones, the most important components of the motor system, are derived from mesodermal and ectodermal mesenchymal stem cells. The adjacent anatomical relationship between them provides the basic conditions for mechanical and chemical signals, which may contribute to the co-occurrence of sarcopenia and osteoporosis. Identifying the potential common crosstalk genes between them may provide new insights for preventing and treating their development. In this study, DEG analysis, WGCNA, and machine learning algorithms were used to identify the key crosstalk genes of sarcopenia and osteoporosis; this was then validated using independent datasets and clinical samples. Finally, four crosstalk genes (ARHGEF10, PCDH7, CST6, and ROBO3) were identified, and mRNA expression and protein levels of PCDH7 in clinical samples from patients with sarcopenia, with osteoporosis, and with both sarcopenia and osteoporosis were found to be significantly higher than those from patients without sarcopenia or osteoporosis. PCDH7 seems to be a key gene related to the development of both sarcopenia and osteoporosis.

9.
Int J Nanomedicine ; 18: 1875-1895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051313

RESUMO

Background: Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities. This study aimed to explore the effect of hydrogel with osteoimmunomodulatory properties on promoting osteogenesis of bone marrow stem cells (BMSCs). Methods: Alg/GO/Ser/nHAP nanocomposite hydrogel was fabricated and was characterized by SEM, FTIR, XRD, stress-strain, rheology, swelling and degradation. After the impact of sericin on M2 macrophage polarization was identified, the BMSCs viability and adhesion were evaluated by CCK8 assay, live/dead staining, cytoskeleton staining. The cell osteogenic differentiation was observed by ALP/ARS staining, immunofluorescence staining, RT-PCR, and Western blotting, respectively. Rat cranial defect model was used to assess osteoimmunomodulatory effects of scaffolds in vivo by micro­computed tomographic, histological, and immunohistochemical analyses after 8 weeks of healing. Results: In vitro experiments revealed that the hydrogel presented desirable mechanical strength, stability, porosity, and biocompatibility. Significantly, sericin and nHAP appeared to exert synergistic effects on bone regeneration. Sericin was observed to inhibit the immune response by inducing macrophage M2-type polarization to create a positive osteoimmune microenvironment, contributing to improving osseointegration at the bone-implant interface to promote osteogenesis. However, the osteogenic differentiation in rat BMSCs was further enhanced by combining nHAP and sericin in the nanocomposite hydrogel. Eventually, the hydrogel was implanted into the rat cranial defect model, assisting in the reduction of local inflammation and efficient bone regeneration. Conclusion: The nanocomposite hydrogel stimulated bone formation by the synergistic effects of immunomodulation of macrophage polarization by sericin and direct osteogenic induction by nHAP, demonstrating that such a scaffold that modulates the osteoimmune microenvironment to promote osteogenesis is a promising approach for the development of bone tissue engineering implants in the future.


Assuntos
Osteogênese , Sericinas , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Sericinas/farmacologia , Durapatita/farmacologia , Durapatita/química , Nanogéis , Alicerces Teciduais/química , Regeneração Óssea , Diferenciação Celular , Imunidade , Imunomodulação
10.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672240

RESUMO

The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area. On the basis of the electrophysiological characteristics of circulating tumor cells (CTCs), clinical application and performance assessment are determined. To demonstrate that cancer cells have a unique pattern of electrophysiological patterns compared to normal cells, fluorescent nanoprobes with opposing charges were developed and fabricated. Graphene oxide (GO) was used to transform three-dimensional (3D) nanoprobes into two-dimensional (2D) nanoprobes. Compare 2D and 3D electrophysiological magnetic nanoprobes (MNP) in clinical samples and evaluate the adaptability and development of CTCs detection based on cell electrophysiology. Positively charged nanoprobes rapidly bind to negatively charged cancer cells based on electrostatic interactions. Compared to MNPs(+) without GO, the GO/MNPs(+) nanoprobe is more efficient and uses less material to trap cancer cells. CTCs can be distinguished from normal cells that are fully unaffected by nanoprobes by microscopic cytomorphological inspection, enabling the tracking of the number and pathological abnormalities of CTCs in the same patient at various chemotherapy phases to determine the efficacy of treatment. The platform for recognizing CTCs on the basis of electrophysiological characteristics compensates for the absence of epithelial biomarker capture and size difference capture in clinical performance. Under the influence of electrostatic attraction, the binding surface area continues to influence the targeting of cancer cells by nanoprobes. The specific recognition and detection of nanoprobes based on cell electrophysiological patterns has enormous potential in the clinical diagnosis and therapeutic monitoring of cancer.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais
11.
Front Mol Biosci ; 10: 1300294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192337

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer, characterized by high mortality rate. In clinical practice, several makers of liver cancer, such as VEGFR1, FGFR1 and PDGFRα, were identified and their potentials as a therapeutic target were explored. However, the unsatisfied treatment results emphasized the needs of new therapeutic targets. Methods: 112 HCC patients samples were obtained to evaluate the expression of LRRC41, SOX9, CD44, and EPCAM in HCC, combined with prognosis analysis. A DEN-induced HCC rat model was constructed to verify the expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Immune score evaluation was analysized by bioinformatics methods. Network pharmacology was performed to explored the potential FDA-approved drugs targeting LRRC41. Results: Through analysis of the Timer database and tissue micro-array, we confirmed that LRRC41 was over-expressed in HCC and exhibited a significant positive correlation with recurrence and metastasis. Immunohistochemistry staining of human HCC tissue samples revealed significant upregulation of LRRC41, SOX9, CD44, and EPCAM, with LRRC41 showing a positive correlation with SOX9, CD44, and EPCAM expression. UALCAN database analysis indicated that LRRC41 and SOX9 contribute to poor prognosis whereas CD44 and EPCAM did not demonstrate the same significance. Furthermore, analysis of a DEN-induced HCC rat model confirmed the significantly elevated expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Drug sensitivity analysis and molecular docking targeting LRRC41 identified several FDA-approved drugs, which may have potential antitumor effects on HCC by targeting LRRC41. Conclusion: Our findings highlight the role of LRRC41 overexpression in promoting HCC progression and its association with a poor prognosis. Drug sensitivity analysis and molecular docking shows several FDA-approved drugs may be potential therapeutic targets for HCC. Targeting LRRC41 may hold promise as a potential therapeutic strategy for HCC.

12.
J Cancer Res Clin Oncol ; 149(15): 13705-13716, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37522925

RESUMO

PURPOSE: Cancer vaccine (CV) has thrived as a promising tool for cancer prevention and treatment. However, how to maintain the integrity and diversity of individualized vaccine antigens and activate the adaptive immune system is still challenging. METHODS: Herein, a preventive and therapeutic vaccine platform for in situ effective multi-model synergistic therapy is developed. In our study, we process B16F10 cells by liquid nitrogen frozen (LNF) to obtain LNF cells, the characterization of LNF cells were conducted. Moreover,  the anti-tumor effect and immune activation ability were studied, and the role as a CV were investigated. RESULTS: The LNF cells preserve intact cellular structure and tumor-associated self-antigen gp100. Moreover, LNF cells have the ability of loading and releasing doxorubicin (DOX). Except for the anti-tumor effect of chemotherapy brought by DOX, the LNF cells can promote the maturation of dendritic cells (DCs) and induce immune response by activating CD4+ and CD8+ T cells, particularly with the existence of adjuvant, R848. Specifically, the CD8+ T cells of mice in LNF-DOX/R848 group are 6 times of that in PBS group in tumor microenvironment, and twice in spleen. Therefore, LNF cells can also be utilized as a CV. Vaccination with LNF/R848 cells effectively suppress the tumor growth in mice by fivefold as compared to the control group. CONCLUSION: In this work, we obtain the LNF cells with a simple procedure. The LNF cells not only provides a tumor cells-based multi-modal system for cancer therapy but inspires new insights into future development of individualized CVs strategies. This study processes live B16F10 cells by liquid nitrogen frozen to obtain LNF cells, which preserve cell integrity and homologous targeting ability. The LNF cells can load and deliver drug and can serve as tumor vaccine. Results demonstrated the LNF cells have effective prophylactic ability, and ideal anti-tumor ability with the loaded drug and adjuvant.

13.
ACS Biomater Sci Eng ; 8(9): 3676-3689, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018296

RESUMO

Neutrophils, the most abundant white blood cells in the human body, are important immune cells responsible for the innate immune response. Neutrophils can migrate to inflammatory areas, such as tumor sites and infection sites, because of chemotaxis. Neutrophil-based nanomaterials, such as neutrophil-nanomaterial composites and neutrophil membrane-based nanomaterials, can help the drug or imaging agent gather in the inflammatory area with the help of chemotaxis. In addition, some nanomaterials can interfere with the function of neutrophils to treat tissue damage caused by excessive local accumulation of neutrophils. This review focuses on the interaction between nanomaterials and neutrophils as well as the applications of neutrophil-based nanomaterials and neutrophil-interfering nanomaterials.


Assuntos
Nanopartículas , Neutrófilos , Humanos , Nanopartículas/uso terapêutico
14.
Biomed Pharmacother ; 147: 112672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104698

RESUMO

Novel functions and involvement of circFARSA have not been reported in pancreatic cancer; in addition, its inhibitor screening has not yet been conducted. The purpose of this study was to (1) verify circFARSA as a novel anti-cancer target for pancreatic cancer and (2) to prepare a novel anti-pancreatic cancer agent targeting circFARSA. In this study, we designed and synthesized a small interfering RNA (siRNA, named siRNA-circFARSA), which specifically inhibits circFARSA expression. Using liposomes and porous silicon nanoparticles (pSiNPs) as siRNA delivery system, we prepared liposome-siRNA-circFARSA and pSiNP-PEI-siRNA-circFARSA and investigated their anti-cancer mechanism by quantitative real-time PCR and western blotting. Cell proliferation curves and transwell migration assays were performed to investigate the effect of siRNAs proliferation and migration capabilities of cancer cells. Patient-derived tumor xenograft mouse models were used to investigate the anti-cancer effects in vivo. The data showed that both liposome-siRNA-circFARSA and pSiNP-PEI-siRNA-circFARSA (Si: 0.7 µg/mL) significantly inhibited the proliferation and migration of pancreatic cancer cells in vitro. However, the biological safety and in vivo anti-cancer effects of pSiNP-PEI-siRNA-circFARSA (Si: 22.4 µg/mL) were higher than those of liposome-siRNA-circFARSA. The results showed that siRNA-circFARSA could inhibit the expression of circFARSA and then BCL-2 protein expression, thereby leading to pancreatic cancer cell apoptosis after transportation into pancreatic cancer cells. Therefore, this study provides tools for pancreatic cancer treatment in the future, as it (1) verified circFARSA as a novel target for pancreatic cancer treatment, and (2) prepared a novel anti-pancreatic cancer agent (pSiNP-PEI-siRNA-circFARSA).


Assuntos
Nanopartículas/química , Neoplasias Pancreáticas/patologia , RNA Circular/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Silício/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inativação Gênica , Humanos , Lipossomos/química , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Cell Dev Biol ; 9: 813420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174172

RESUMO

Objectives: Tumor cells were reported to have perpetual negative surface charges due to elevated glycolysis, and multifunctional nanoprobes (Fe3O4@SiO2, mNPs) could attach onto tumor cells via opposite surface charges. We thus evaluated whether mixing mNPs with urine could improve the sensitivity of urine cytology test (UCT). Methods: We developed a novel UCT method by mixing urine with mNPs (Nano-cytology) to harvest more tumor cells during UCT procedures. The same voided urine sample was divided equally for the Nano-cytology and UCT assay, and evaluated by cytopathologists in a blinded way. The accuracy of UCT, Nano-cytology, and the combination of the two approaches (Nano-UCT) for detecting bladder cancer were determined. Results: Urine samples were prospectively collected from 102 bladder cancer patients and 49 non-cancer participants from June 2020 to February 2021 in Changhai Hospital. Overall sensitivity of the Nano-cytology assay was significantly higher than that of the UCT assay (82.4 vs. 59.8%, p < .01). Sensitivity for low- and high-grade tumors was 79.1% and 39.5% (p < .01) and 84.7% and 74.6% (p = .25) for Nano-cytology and UCT, respectively. Specificity of Nano-cytology was slightly lower than that of UCT (89.8% vs. 100%, p = .022), which is mainly caused by severe urinary tract infection. In addition, Nano-UCT showed increased sensitivity with 90.2% for overall patients, and 83.7% and 94.9% for low- and high-grade tumor, respectively. Conclusion: The Nano-cytology assay had a significantly improved sensitivity compared with UCT for detecting bladder cancer patients. It represents a promising tool for diagnosis of bladder cancer in clinical practice.

16.
Nanoscale Res Lett ; 16(1): 124, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34331597

RESUMO

At present, various fluorescent nanomaterials have been designed and synthesized as optical contrast agents for surgical navigation. However, there have been no reports on the preparation of fluorescent contrast agents for lung cancer surgery navigation using silicon quantum dots (Si QDs). This study improved and modified the water-dispersible Si QD micelles reported by Pi et al. to prepare Si QD micelles-CKAP4. The data showed that the Si QD micelles-CKAP4 were spherical particles with a mean hydrodiameter of approximately 78.8 nm. UV-visible absorption of the Si QD micelles-CKAP4 ranged from 200 to 500 nm. With an excitation wavelength of 330 nm, strong fluorescence at 640 nm was observed in the fluorescence emission spectra. Laser confocal microscopy and fluorescence microscopy assay showed that the Si QD micelles-CKAP4 exhibited good targeting ability to lung cancer cells and lung cancer tissues in vitro. The in vivo fluorescence-imaging assay showed that the Si QD micelles-CKAP4 was metabolized by the liver and excreted by the kidney. In addition, Si QD micelles-CKAP4 specifically targeted lung cancer tissue in vivo compared with healthy lung tissue. Cytotoxicity and hematoxylin and eosin staining assays showed that the Si QD micelles-CKAP4 exhibited high biosafety in vitro and in vivo. Si QD micelles-CKAP4 is a specifically targeted imaging agent for lung cancer and is expected to be a fluorescent contrast agent for lung cancer surgical navigation in the future.

17.
Biosens Bioelectron ; 179: 113078, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607417

RESUMO

Wearable non-invasive glucose sensors that can provide human a painless and portable means to monitor their blood glucose and manage their health condition draw great attentions, recently. Non-invasive human glucose sensors by detecting glucose in interstitial fluid (ISF) extracted through a reverse iontophoresis (RI) approach have been widely investigated, but the current challenges are their complex structure and instability for continuous monitor. Herein, we demonstrate a simple two-electrode non-invasive blood glucose sensor, which is fabricated by using graphene/carbon nanotubes/glucose oxidase composite textile and graphene/carbon nanotube/silver/silver chloride composite textile as the working electrode and counter electrode, respectively. By using one single device, extraction of ISF through RI process is firstly conducted by loading a certain electric current between two electrodes, then the glucose concentration in the ISF is detected through an amperometric approach by using the same two electrodes. The feasibility of these non-invasive glucose sensors is validated on porcine skin, nude mice and human. The blood glucose concentration calculated according to the response currents of the two-electrode sensors is highly consistent with that measured by commercial glucose meter. Furthermore, the used textile-like electrodes provide the non-invasive blood glucose sensors with excellent flexible and wearable properties, which make them promising to be integrated with other electronic units for monitor and management of human health.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Animais , Glicemia , Líquido Extracelular , Glucose , Camundongos , Camundongos Nus
18.
Biomater Sci ; 9(11): 3968-3978, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666216

RESUMO

Nanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy. The combined effect of neutrophil targeting and magnetic targeting increased the accumulation of PTA at the tumor site. According to magnetic resonance imaging (MRI), the retention of intravenous injected NSNP-incorporated neutrophils within the tumor site was markedly augmented as compared to free NSNP. Furthermore, when irradiated by NIR, NSNP could cause a high local temperature at the tumor site and the thermal stimulation of neutrophils. The heat can kill tumor cells directly, and also lead to the death of neutrophils, upon which active substances with tumor-killing efficacy will be released to kill residual tumor cells and thus reduce tumor recurrence. Thereby, our therapy achieved the elimination of malignancy in the mouse model of the pancreatic tumor without recurrence. Given that all materials used in this system have been approved for use in humans, the transition of this treatment method to clinical application is plausible.


Assuntos
Hipertermia Induzida , Nanopartículas , Ferro , Imageamento por Ressonância Magnética , Neutrófilos , Fototerapia , Terapia Fototérmica
19.
Theranostics ; 10(8): 3430-3450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206100

RESUMO

Reactive oxygen species (ROS) play a crucial role in cancer formation and development, especially cancer metastasis. However, lack of a precise tool, which could accurately distinguish specific types of ROS, restricts an in-depth study of ROS in cancer development and progression. Herein, we designed smart and versatile fluorescent Ag nanoclusters (AgNCs) for sensitive and selective detection of different species of ROS in cells and tissues. Methods: Firstly, dual-emission fluorescent AgNCs was synthesized by using bovine serum albumin (BSA) to sense different types of ROS (H2O2, O2•-, •OH). The responsiveness of the AgNCs to different species of ROS was explored by fluorescence spectrum, hydrodynamic diameter, and so on. Furthermore, dual-emission fluorescent AgNCs was used to sense ROS in tumor with different degrees of differentiation. Finally, the relationship between specific types of ROS and tumor cell invasion was explored by cell migration ability and the expression of cell adhesion and EMT markers. Results: This dual-emission fluorescent AgNCs possessed an excellent ability to sensitively and selectively distinguish highly reactive oxygen species (hROS, including O2•-and •OH) from moderate reactive oxygen species (the form of H2O2), and exhibited no fluoresence and green fluorescence, respectively. The emission of AgNCs is effective in detecting cellular and tissular ROS. When cultured with AgNCs, malignant tumor cells exhibit non-fluorescence, while the benign tumor emits green and reduced red light and the normal cells appear in weak green and bright red fluorescence. We further verified that not just H2O2 but specific species of ROS (O2•-and •OH) were involved in cell invasion and malignant transformation. Our study warrants further research on the role of ROS in physiological and pathophysiological processes. Conclusion: Taken together, AgNCs would be a promising approach for sensing ROS, and offer an intelligent tool to detect different kinds of ROS in tumors.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Nanopartículas Metálicas , Neoplasias/diagnóstico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Prata , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/patologia , Fenótipo , Sensibilidade e Especificidade , Soroalbumina Bovina , Espectrometria de Fluorescência
20.
ACS Appl Mater Interfaces ; 12(14): 16031-16039, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186357

RESUMO

Modulating the surface properties of nanoparticles (NPs) is an important approach to accomplish immune escape, prolonged the blood retention time, and enhance the ability of targeted drug delivery. The camouflage of cancer cell membrane onto nanoparticles has been proved to be an ideal approach to enhance active targeting ability of NPs. Herein, we isolated the membrane of melanoma cells to coat doxorubicin (DOX) and indocyanine green (ICG)-loaded hollow copper sulfide NPs (ID-HCuSNP@B16F10) for targeted photothermal therapy, photoacoustic imaging, and chemotherapy. A remarkable in vitro anticancer effect after irradiation and homologous targeting can be observed in B16F10 cells after the treatment of ID-HCuSNP@B16F10. Moreover, ID-HCuSNP@B16F10 exhibits excellent photothermal effect in melanoma animal models and achieves a high tumor ablation rate. This biomimetic system can realize high drug loading efficiency, enhanced targeting ability, and ideal antitumor efficiency.


Assuntos
Melanoma Experimental/terapia , Nanopartículas/química , Técnicas Fotoacústicas , Terapia Fototérmica , Animais , Biomimética , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Diagnóstico por Imagem , Tratamento Farmacológico , Humanos , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/patologia , Camundongos , Nanopartículas/uso terapêutico , Propriedades de Superfície/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA