Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Proteome Res ; 21(1): 67-76, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928606

RESUMO

Human serum is one of the most attractive specimens in biomarker research. However, its overcomplicated properties have hindered the analysis of low-abundance proteins by conventional mass spectrometry techniques. This work proposes an innovative strategy for utilizing nanodiamonds (NDs) in combination with Triton X-114 protein extraction to fractionate the crude serum to six pH-tuned fractions, simplifying the overall proteome and facilitating protein profiling with high efficiency. A total of 663 proteins are identified and evenly distributed among the fractions along with 39 FDA-approved biomarkers─a remarkable increase from the 230 proteins found in unfractionated crude serum. In the low-abundance protein section, 88 proteins with 7 FDA-approved biomarkers are detected─a marked increase from the 15 proteins (2 biomarkers) observed in the untreated sample. Notably, fractions at pH 11, derived from the aqueous phase of detergent separation, suggest potential applications in rapid and robust serum proteome analysis. Notably, by outlining the excellent properties of NDs for proteomic research, this work suggests a promising extraction protocol utilizing the great compatibility of NDs with streamlined serum proteomics and identifies potential avenues for future developments. Finally, we believe that this work not just improves shotgun proteomics but also opens up studies on the interaction between NDs and the human proteome. Data are available via ProteomeXchange with the identifier PXD029710.


Assuntos
Nanodiamantes , Proteoma , Humanos , Nanodiamantes/análise , Octoxinol , Proteoma/análise , Proteômica/métodos , Extração em Fase Sólida
2.
J Org Chem ; 87(15): 9875-9886, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35815579

RESUMO

To find their potential use in protein research, direct addition of a disulfide compound to alkyne (namely disulfide-yne reaction) and S-arylation with arenediazonium salt (namely disulfide-diazonium reaction) were investigated in aqueous or protic solutions. The reaction of dimethyl disulfide with 5-hexynol performed best under 300 nm irradiation in the presence of sodium acetate to afford 5,6-bis(methylthio)-5-hexenol in 60% yield. Without the prior reduction of a disulfide bond to thiols, the disulfide-yne reactions have the advantage of 100% atom economy. Disulfide-diazonium reaction was triggered by sodium formate and accelerated by photoirradiation with a 450 nm LED lamp (5 W). The reaction of 3,4-dihydroxy-1,2-dithiane with 2-(prop-2-yn-1-yloxy)benzene-1-diazonium tetrafluoroborate (8b) afforded 2-(benzofuran-3-yl)-1,3-dithiepane-5,6-diol (13), confirming that both S substituents originate from the same disulfide molecule. The trastuzumab antibody was incubated with diazonium 8b, followed by α-lytic protease digestion, LC-ESI-MS/MS analysis, and Mascot search, to verify that the proximal C229 and C232 residues on the same heavy chain were reconnected with a (benzofuranyl)methine moiety that originated from 8b, unlike the expected disulfide rebridging across two heavy chains. Nonetheless, disulfide-diazonium reactions still have potential for rebridging disulfide bonds if appropriate proteins and diazonium agents are chosen.


Assuntos
Dissulfetos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Dissulfetos/química , Proteínas/química , Compostos de Sulfidrila
3.
Proc Natl Acad Sci U S A ; 115(28): 7302-7307, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941599

RESUMO

Protein O-glycosylation by attachment of ß-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.


Assuntos
Acetilglucosamina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Mutação de Sentido Incorreto , Acetilglucosamina/química , Acetilglucosamina/genética , Substituição de Aminoácidos , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Estabilidade Enzimática , Glicosilação , Humanos , Domínios Proteicos
4.
Int J Cancer ; 144(8): 1996-2007, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30252131

RESUMO

ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-ß1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-ß1 by 2- to 3-fold and thereby dampening TGF-ß1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-ß1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-ß1 upregulates ST3Gal1 to circumvent the negative impact of VASN.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia/patologia , Neovascularização Patológica/patologia , Sialiltransferases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Recidiva Local de Neoplasia/epidemiologia , RNA Interferente Pequeno/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/genética , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosídeo alfa-2,3-Sialiltransferase
5.
Clin Proteomics ; 16: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622446

RESUMO

BACKGROUND: Misdiagnosis of autoimmune pancreatitis (AIP) as pancreatic cancer (PDAC) or vice versa can cause dismal patents' outcomes. Changes in IgG glycosylation are associated with cancers and autoimmune diseases. This study investigated the IgG glycosylation profiles as diagnostic and prognostic biomarkers in PDAC and AIP. METHODS: Serum IgG-glycosylation profiles from 86 AIP patients, 115 PDAC patients, and 57 controls were analyzed using liquid chromatography-electrospray ionization mass spectrometry. Classification and regression tree (CART) analysis was applied to build a decision tree for discriminating PDAC from AIP. The result was validated in an independent cohort. RESULTS: Compared with AIP patients and controls, PDAC patients had significantly higher agalactosylation, lower fucosylation, and sialylation of IgG1, a higher agalactosylation ratio of IgG1 and a higher agalactosylation ratio of IgG2. AIP patients had significantly higher fucosylation of IgG1 and a higher sialylation ratio of IgG subclasses 1, 2 and 4. Using the CART analysis of agalactosylation and sialylation ratios in the IgG to discriminate AIP from PDAC, the diagnostic accuracy of the glycan markers was 93.8% with 94.6% sensitivity and 92.9% specificity. There were no statistically significant difference of IgG-glycosylation profiles between diffuse type and focal type AIP. CONCLUSIONS: AIP and PDAC patients have distinct IgG-glycosylation profilings. IgG-glycosylation could different PDAC from AIP with high accuracy.

6.
Proc Natl Acad Sci U S A ; 112(42): 13057-62, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438868

RESUMO

The incidence and mortality rate of oral cancer continue to rise, partly due to the lack of effective early diagnosis and increasing environmental exposure to cancer-causing agents. To identify new markers for oral cancer, we used a sialylation probe to investigate the glycoproteins differentially expressed on oral cancer cells. Of the glycoproteins identified, B7 Homolog 3 (B7-H3) was significantly overexpressed in oral squamous cell carcinoma (OSCC), and its overexpression correlated with larger tumor size, advanced clinical stage, and low survival rate in OSCC patients. In addition, knockdown of B7-H3 suppressed tumor cell proliferation, and restoration of B7-H3 expression enhanced tumor growth. It was also found that the N-glycans of B7-H3 from Ca9-22 oral cancer cells contain the terminal α-galactose and are more diverse with higher fucosylation and better interaction with DC-SIGN [DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin] and Langerin on immune cells than that from normal cells, suggesting that the glycans on B7-H3 may also play an important role in the disease.


Assuntos
Antígenos B7/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Antígenos B7/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Glicosilação , Humanos , Neoplasias Bucais/imunologia , Neoplasias Bucais/patologia
7.
J Am Chem Soc ; 139(28): 9431-9434, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28678517

RESUMO

The core fucosylation of N-glycans on glycoproteins is catalyzed by fucosyltransferase 8 (FUT8) in mammalian cells and is involved in various biological functions, such as protein function, cancer progression, and postnatal development. The substrate specificity of FUT8 toward bi-antennary N-glycans has been reported, but it is unclear with regard to tri-antennary and tetra-antennary glycans. Here, we examined the specificity and activity of human FUT8 toward tri- and tetra-antennary N-glycans in the forms of glycopeptides. We found that the tri-antennary glycan [A3(2,4,2) type] terminated with N-acetylglucosamine (GlcNAc), which is generated by N-acetylglucosaminyltransferase (GnT)-IV, is a good substrate for FUT8, but the A3(2,2,6) type of tri-antennary glycan, generated by GnT-V, is not a substrate for FUT8. We also observed that core fucosylation reduced the activity of GnT-IV toward the bi-antennary glycan. Examining the correlation between the types of N-glycans and the expression levels of FUT8, GnT-IV, and GnT-V in cells revealed that these glycosyltransferases, particularly GnT-IV, play important roles in directing the branching and core fucosylation of N-glycans in vivo. This study thus provides insights into the interplay among FUT8, GnT-IV, and GnT-V in N-linked glycosylation during the assembly of glycoproteins.


Assuntos
Fucose/metabolismo , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Biocatálise , Fucose/química , Fucosiltransferases/química , Glicoproteínas/química , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/química , Polissacarídeos/química , Especificidade por Substrato
8.
Biochim Biophys Acta ; 1854(12): 1842-1852, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26275807

RESUMO

Acetylene (HCCH) has a long history as a mechanism-based enzyme inhibitor and is considered an active-site probe of the particulate methane monooxygenase (pMMO). Here, we report how HCCH inactivates pMMO in Methylococcus capsulatus (Bath) by using high-resolution mass spectrometry and computational simulation. High-resolution MALDI-TOF MS of intact pMMO complexes has allowed us to confirm that the enzyme oxidizes HCCH to the ketene (C2H2O) intermediate, which then forms an acetylation adduct with the transmembrane PmoC subunit. LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the protein subunit identifies K196 of PmoC as the site of acetylation. No evidence is obtained for chemical modification of the PmoA or PmoB subunit. The inactivation of pMMO by a single adduct in the transmembrane PmoC domain is intriguing given the complexity of the structural fold of this large membrane-protein complex as well as the complicated roles played by the various metal cofactors in the enzyme catalysis. Computational studies suggest that the entry of hydrophobic substrates to, and migration of products from, the catalytic site of pMMO are controlled tightly within the transmembrane domain. Support of these conclusions is provided by parallel experiments with two related alkynes: propyne (CH3CCH) and trifluoropropyne (CF3CCH). Finally, we discuss the implication of these findings to the location of the catalytic site in pMMO.


Assuntos
Acetileno/metabolismo , Methylococcus capsulatus/metabolismo , Oxigenases/metabolismo , Cromatografia Líquida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
9.
Proc Natl Acad Sci U S A ; 110(27): 10928-33, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776238

RESUMO

Glycosylation, an important posttranslational modification process, can modulate the structure and function of proteins, but its effect on the properties of plasma cells is largely unknown. In this study, we identified a panel of glycoproteins by click reaction with alkynyl sugar analogs in plasma cells coupled with mass spectrometry analysis. The B-cell maturation antigen (BCMA), an essential membrane protein for maintaining the survival of plasma cells, was identified as a glycoprotein exhibiting complex-type N-glycans at a single N-glycosylation site, asparagine 42. We then investigated the effect of N-glycosylation on the function of BCMA and found that the dexamethasone-induced apoptosis in malignant plasma cells can be rescued by treatment with BCMA ligands, such as a proliferation-inducing ligand (APRIL) and B-cell-activating factor (BAFF), whereas removal of terminal sialic acid on plasma cells further potentiated the ligand-mediated protection. This effect is associated with the increased surface retention of BCMA, leading to its elevated level on cell surface. In addition, the α1-3,-4 fucosylation, but not the terminal sialylation, assists the binding of BCMA with ligands in an in vitro binding assay. Together, our results highlight the importance of N-glycosylation on BCMA in the regulation of ligand binding and functions of plasma cells.


Assuntos
Antígeno de Maturação de Linfócitos B/química , Antígeno de Maturação de Linfócitos B/metabolismo , Polissacarídeos/química , Polissacarídeos/fisiologia , Asparagina/química , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Química Click , Glicosilação , Humanos , Ligantes , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Plasmócitos/patologia
10.
J Am Chem Soc ; 137(30): 9685-93, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26168351

RESUMO

Galectin-3 binding protein (Gal-3BP) is a large hyperglycosylated protein that acts as a ligand for several galectins through glycan-dependent interactions. Gal-3BP can induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the bloodstream during the metastatic process. However, the galectin interacting with Gal-3BP and its binding specificity has not been identified and structurally elucidated, mainly due to the limitation of mass spectrometry in glycan sequencing. To understand the role of Gal-3BP, we here used liquid chromatography-mass spectrometry combined with specific exoglycosidase reactions to determine the sequences of N-glycans on Gal-3BP from MCF-7 and MDA-MB-231 cells, especially the sequences with terminal sialylation and fucosylation, and addition of LacNAc repeat structures. The N-glycans from both strains are complex type with terminal α2,3-sialidic acid and core fucose linkages, with additional α1,2- and α1,3 fucose linkages found in MCF-7 cells. Compared with that from MCF-7, the Gal-3BP from MDA-MB-231 cells had fewer tetra-antennary structures, only α1,6-linked core fucoses, and more LacNAc repeat structures; the MDA-MB-231 cells had no surface galectin-3 but used surface galectin-1 for interaction with Gal-3BP to form large oligomers and cell aggregates. This study elucidates the specificity of Gal-3BP interacting with galectin-1 and the role of Gal-3BP in cancer cell aggregation and metastasis.


Assuntos
Neoplasias da Mama/patologia , Galectina 1/metabolismo , Galectina 3/metabolismo , Metástase Neoplásica/patologia , Proteínas Sanguíneas , Neoplasias da Mama/metabolismo , Agregação Celular , Linhagem Celular Tumoral , Feminino , Galectinas , Humanos , Células MCF-7 , Ligação Proteica
11.
J Am Chem Soc ; 137(1): 267-75, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25521652

RESUMO

Discovery of new antibiotics for combating methicillin-resistant Staphylococcus aureus (MRSA) is of vital importance in the post-antibiotic era. Here, we report four avenaciolide derivatives (1-4) isolated from Neosartorya fischeri, three of which had significant antimicrobial activity against MRSA. The morphology of avenaciolide-treated cells was protoplast-like, which indicated that cell wall biosynthesis was interrupted. Comparing the structures and minimum inhibitory concentrations of 1-4, the α,ß-unsaturated carbonyl group seems to be an indispensable moiety for antimicrobial activity. Based on a structural similarity survey of other inhibitors with the same moiety, we revealed that MurA was the drug target. This conclusion was validated by (31)P NMR spectroscopy and MS/MS analysis. Although fosfomycin, which is the only clinically used MurA-targeted antibiotic, is ineffective for treating bacteria harboring the catalytically important Cys-to-Asp mutation, avenaciolides 1 and 2 inhibited not only wild-type but also fosfomycin-resistant MurA in an unprecedented way. Molecular simulation revealed that 2 competitively perturbs the formation of the tetrahedral intermediate in MurA. Our findings demonstrated that 2 is a potent inhibitor of MRSA and fosfomycin-resistant MurA, laying the foundation for the development of new scaffolds for MurA-targeted antibiotics.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Peptidoglicano/biossíntese , Alquil e Aril Transferases/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Lactonas/química , Lactonas/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/citologia , Estrutura Molecular , Neosartorya/química , Relação Estrutura-Atividade
12.
Mol Cell Proteomics ; 11(10): 901-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22761399

RESUMO

Mutational activation of KRAS promotes various malignancies, including lung adenocarcinoma. Knowledge of the molecular targets mediating the downstream effects of activated KRAS is limited. Here, we provide the KRAS target proteins and N-glycoproteins using human bronchial epithelial cells with and without the expression of activated KRAS (KRAS(V12)). Using an OFFGEL peptide fractionation and hydrazide method combined with subsequent LTQ-Orbitrap analysis, we identified 5713 proteins and 608 N-glycosites on 317 proteins in human bronchial epithelial cells. Label-free quantitation of 3058 proteins (≥2 peptides; coefficient of variation (CV) ≤ 20%) and 297 N-glycoproteins (CV ≤ 20%) revealed the differential regulation of 23 proteins and 14 N-glycoproteins caused by activated KRAS, including 84% novel ones. An informatics-assisted IPA-Biomarker® filter analysis prioritized some of the differentially regulated proteins (ALDH3A1, CA2, CTSD, DST, EPHA2, and VIM) and N-glycoproteins (ALCAM, ITGA3, and TIMP-1) as cancer biomarkers. Further, integrated in silico analysis of microarray repository data of lung adenocarcinoma clinical samples and cell lines containing KRAS mutations showed positive mRNA fold changes (p < 0.05) for 61% of the KRAS-regulated proteins, including biomarker proteins, CA2 and CTSD. The most significant discovery of the integrated validation is the down-regulation of FABP5 and PDCD4. A few validated proteins, including tumor suppressor PDCD4, were further confirmed as KRAS targets by shRNA-based knockdown experiments. Finally, the studies on KRAS-regulated N-glycoproteins revealed structural alterations in the core N-glycans of SEMA4B in KRAS-activated human bronchial epithelial cells and functional role of N-glycosylation of TIMP-1 in the regulation of lung adenocarcinoma A549 cell invasion. Together, our study represents the largest proteome and N-glycoproteome data sets for HBECs, which we used to identify several novel potential targets of activated KRAS that may provide insights into KRAS-induced adenocarcinoma and have implications for both lung cancer therapy and diagnosis.


Assuntos
Adenocarcinoma/genética , Proteínas Reguladoras de Apoptose/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/genética , Proteínas ras/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais , Brônquios/patologia , Linhagem Celular Tumoral , Células Epiteliais/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteínas ras/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(28): 11332-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709263

RESUMO

Protein glycosylation is an important posttranslational process, which regulates protein folding and functional expression. Studies have shown that abnormal glycosylation in tumor cells affects cancer progression and malignancy. In the current study, we have identified sialylated proteins using an alkynyl sugar probe in two different lung cancer cell lines, CL1-0 and CL1-5 with distinct invasiveness derived from the same parental cell line. Among the identified sialylated proteins, epidermal growth factor receptor (EGFR) was chosen to understand the effect of sialylation on its function. We have determined the differences in glycan sequences of EGFR in both cells and observed higher sialylation and fucosylation of EGFR in CL1-5 than in CL1-0. Further study suggested that overexpression of sialyltransferases in CL1-5 and α1,3-fucosyltransferases (FUT4 or FUT6) in CL1-5 and A549 cells would suppress EGFR dimerization and phosphorylation upon EGF treatment, as compared to the control and CL1-0 cells. Such modulating effects on EGFR dimerization were further confirmed by sialidase or fucosidase treatment. Thus, increasing sialylation and fucosylation could attenuate EGFR-mediated invasion of lung cancer cells. However, incorporation of the core fucose by α1,6-fucosylatransferase (FUT8) would promote EGFR dimerization and phosphorylation.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Primers do DNA/genética , Dimerização , Ativação Enzimática , Receptores ErbB/genética , Fucose/química , Fucose/metabolismo , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Invasividade Neoplásica/fisiopatologia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
J Proteome Res ; 12(12): 5878-90, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24256468

RESUMO

Pluripotency of embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) and reprograming of somatic cells (SCs) to pluripotency are governed by known and unknown factors. These factors, including protein complexes, are poorly described at the proteome level. Here, we established the quantitative proteomic profiles across three types of cells (iPSCs, ESCs, and SCs) using OFFGEL fractionation coupled with LTQ-Orbitrp analysis. Additionally, we utilized the previously published proteomic profiles of iPSCs, ESCs, and SCs. By integrating these proteomic profiles with protein-protein interaction resources, we identified numerous protein complexes in iPSCs and/or ESCs, which include known and novel chromatin remodeling complexes that facilitate cell reprograming. The identified protein complexes also include the previously unreported ones that are associated with the imperfect aspects of iPSCs or cell reprograming process. Further, we performed a comparison between our study and previously published studies and highlighted a partial conservation of the identified protein complexes across the iPSCs generated by different laboratories and iPS cell-type specific protein complexes. The identified protein complexes were validated by integrated in silico analysis of microarray repository data related to ESCs differentiation into embryoid bodies. A majority of the protein complexes exhibited significant (p < 0.005) co-regulation of their components upon ESC differentiation, suggesting their role in the maintenance of the pluripotent state. Finally, we showed a link between the components of the protein complexes and embryonic development using the existing loss-of-function phenotype data. Together, our integrated approach provides the first comprehensive view of the protein complexes that may have implications for cell reprograming and pluripotency.


Assuntos
Reprogramação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células da Granulosa/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas/metabolismo , Proteômica , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células da Granulosa/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Análise em Microsséries , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/genética
15.
J Virol ; 86(9): 4868-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22345471

RESUMO

Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.


Assuntos
Endocitose , Proteína-1 Reguladora de Fusão/metabolismo , Vaccinia virus/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Transporte Biológico , Linhagem Celular , Endocitose/genética , Proteína-1 Reguladora de Fusão/genética , Inativação Gênica , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Fusão de Membrana , Microdomínios da Membrana/metabolismo , Camundongos , Vírion/metabolismo , Internalização do Vírus
16.
J Virol ; 86(12): 6677-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496232

RESUMO

Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin ß1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin ß1 in lipid rafts on the cell surface, and the knockdown of integrin ß1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin ß1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin ß1-dependent manner, suggesting that integrin ß1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin ß1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.


Assuntos
Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Vaccinia virus/fisiologia , Vacínia/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Humanos , Integrina beta1/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Vacínia/enzimologia , Vacínia/genética , Vacínia/virologia , Vaccinia virus/genética
18.
J Chromatogr A ; 1632: 461610, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33080533

RESUMO

Due to the heterogeneous and isomeric nature of glycans, the development of an advanced separation of distinct glycan isomers is essential for glycan research and application. In this study, we utilized porous graphite carbon (PGC) chromatography for the separation of isomeric oligosaccharides without reduction or chemical derivatization at 190 °C in a custom-built heating oven. Furthermore, the fine structures of glycan isomers could be identified by using ultrahigh temperature PGC liquid chromatography mass spectrometry (UHT-PGC-LCMS). A nonreduced hydrolyzed dextran was applied to verify the performance of UHT-PGC. When the temperature of the PGC column was increased from 25 to 190 °C, the liquid chromatography separation power of the nonreduced dextran ladder significantly increased. The advantage of the UHT-PGC column was its high peak capacity with gradient elution in 10 min at 190 °C, 6700 psi, and a 250 µL/min flow rate for native glycan analysis. Four synthetic Lewis antigen isomers were used to elucidate the separation effectiveness in UHT-PGC. Moreover, mass spectrometry-based sequencing to generate specific diagnostic ions from the four synthetic Lewis antigens was used to predict isomeric glycans based on the relative intensity ratio (RIR) of diagnostic ions. The intensities of the diagnostic ions of synthetic isomers were used to identify each isomer of the fucosylated glycan. The results clearly showed that terminal Lewis A and X residues were in the 3- and 6-arms of N-glycan, respectively.


Assuntos
Cromatografia Líquida/métodos , Fucose/química , Fucose/isolamento & purificação , Grafite/química , Espectrometria de Massas em Tandem/métodos , Temperatura , Dextranos/química , Glicosilação , Hidrólise , Íons , Isomerismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Porosidade , Fatores de Tempo
19.
Dis Markers ; 2016: 8915809, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065039

RESUMO

Glycans of prostate-specific antigen (PSA) in prostate cancer were found to be different from that in benign disease. It is difficult to analyze heterogeneous PSA glycoforms in each individual specimen because of low protein abundance and the limitation of detection sensitivity. We developed a method for prostate cancer diagnosis based on PSA glycoforms. Specific glycoforms were screened in each clinical sample based on liquid chromatography-tandem mass spectrometry with ion accumulation. To look for potential biomarkers, normalized abundance of each glycoform in benign prostate hyperplasia (BPH) and in prostate cancer was evaluated. The PSA glycoform, Hex5HexNAc4NeuAc1dHex1, and monosialylated, sialylated, and unfucosylated glycoforms differed significantly between the prostate cancer and BPH samples. The detection sensitivity (87.5%) and specificity (60%) for prostate cancer identification are higher than those of the serum PSA marker. As low as 100 amol PSA could be detected with the ion accumulation method which has not been reported before. The improved detection specificity can help reduce unnecessary examinations.


Assuntos
Glicopeptídeos/isolamento & purificação , Calicreínas/urina , Antígeno Prostático Específico/urina , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Diagnóstico Diferencial , Glicosilação , Humanos , Íons/metabolismo , Calicreínas/sangue , Calicreínas/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/isolamento & purificação , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
20.
Sci Rep ; 6: 36109, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808266

RESUMO

Molecular-level differences ranging from genomes to proteomes, but not N-glycoproteomes, between human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) have been assessed to gain insights into cell reprogramming and induced pluripotency. Our multiplexed quantitative N-glycoproteomics study identified altered N-glycoproteins that significantly regulate cell adhesion processes in hiPSCs compared to hESCs. The integrative proteomics and functional network analyses of the altered N-glycoproteins revealed their significant interactions with known PluriNet (pluripotency-associated network) proteins. We found that these interactions potentially regulate various signaling pathways including focal adhesion, PI3K-Akt signaling, regulation of actin cytoskeleton, and spliceosome. Furthermore, the integrative transcriptomics analysis revealed that imperfectly reprogrammed subunits of the oligosaccharyltransferase (OST) and dolichol-phosphate-mannose synthase (DPM) complexes were potential candidate regulatory events for the altered N-glycoprotein levels. Together, the results of our study suggest that imperfect reprogramming of the protein complexes linked with the N-glycosylation process may result in N-glycoprotein alterations that affect induced pluripotency through their functional protein interactions.


Assuntos
Glicoproteínas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Linhagem Celular , Reprogramação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Transdução de Sinais , Coloração e Rotulagem , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA