Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Glob Chang Biol ; 30(1): e17147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273514

RESUMO

Organo-mineral interactions have been regarded as the primary mechanism for the stabilization of soil organic carbon (SOC) over decadal to millennial timescales, and the capacity for soil carbon (C) storage has commonly been assessed based on soil mineralogical attributes, particularly mineral surface availability. However, it remains contentious whether soil C sequestration is exclusively governed by mineral vacancies, making it challenging to accurately predict SOC dynamics. Here, through a 400-day incubation experiment using 13 C-labeled organic materials in two contrasting soils (i.e., Mollisol and Ultisol), we show that despite the unsaturation of mineral surfaces in both soils, the newly incorporated C predominantly adheres to "dirty" mineral surfaces coated with native organic matter (OM), demonstrating the crucial role of organo-organic interactions in exogenous C sequestration. Such interactions lead to multilayered C accumulation that is not constrained by mineral vacancies, a process distinct from direct organo-mineral contacts. The coverage of native OM by new C, representing the degree of organo-organic interactions, is noticeably larger in Ultisol (~14.2%) than in Mollisol (~5.8%), amounting to the net retention of exogenous C in Ultisol by 0.2-1.3 g kg-1 and in Mollisol by 0.1-1.0 g kg-1 . Additionally, organo-organic interactions are primarily mediated by polysaccharide-rich microbial necromass. Further evidence indicates that iron oxides can selectively preserve polysaccharide compounds, thereby promoting the organo-organic interactions. Overall, our findings provide direct empirical evidence for an overlooked but critically important pathway of C accumulation, challenging the prevailing "C saturation" concept that emphasizes the overriding role of mineral vacancies. It is estimated that, through organo-organic interactions, global Mollisols and Ultisols might sequester ~0.1-1.0 and ~0.3-1.7 Pg C per year, respectively, corresponding to the neutralization of ca. 0.5%-3.0% of soil C emissions or 5%-30% of fossil fuel combustion globally.


Assuntos
Carbono , Solo , Minerais , Polissacarídeos
2.
Environ Sci Technol ; 58(23): 10084-10094, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38816987

RESUMO

The preservation of soil organic carbon (OC) is an effective way to decelerate the emission of CO2 emission. However, the coregulation of pore structure and mineral composition in OC stabilization remains elusive. We employed the in situ nondestructive oxidation of OC by low-temperature ashing (LTA) combined with near edge X-ray absorption fine structure (NEXAFS), high-resolution microtomography (µ-CT), field emission electron probe microanalysis (FE-EPMA) with C-free embedding, and novel Cosine similarity measurement to investigate the C retention in different aggregate fractions of contrasting soils. Pore structure and minerals contributed equally (ca. 50%) to OC accumulation in macroaggregates, while chemical protection played a leading role in C retention with 53.4%-59.2% of residual C associated with minerals in microaggregates. Phyllosilicates were discovered to be more prominent than Fe (hydr)oxides in C stabilization. The proportion of phyllosilicates-associated C (52.0%-61.9%) was higher than that bound with Fe (hydr)oxides (45.6%-55.3%) in all aggregate fractions tested. This study disentangled quantitatively for the first time a trade-off between physical and chemical protection of OC varying with aggregate size and the different contributions of minerals to OC preservation. Incorporating pore structure and mineral composition into C modeling would optimize the C models and improve the soil C content prediction.


Assuntos
Carbono , Minerais , Solo , Solo/química , Carbono/análise , Minerais/química , Dióxido de Carbono/análise , China , Tomografia com Microscopia Eletrônica , Monitoramento Ambiental
3.
J Environ Manage ; 326(Pt A): 116594, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347218

RESUMO

Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.


Assuntos
Rhizobium , Taxa de Sobrevida , Carvão Vegetal/química , Solo/química , Carbono/análise , Temperatura , Propriedades de Superfície
4.
Ecol Lett ; 24(7): 1420-1431, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894021

RESUMO

Phosphorus limitation on terrestrial plant growth is being incorporated into Earth system models. The global pattern of terrestrial phosphorus limitation, however, remains unstudied. Here, we examined the global-scale latitudinal pattern of terrestrial phosphorus limitation by analysing a total of 1068 observations of aboveground plant production response to phosphorus additions at 351 forest, grassland or tundra sites that are distributed globally. The observed phosphorus-addition effect varied greatly (either positive or negative), depending significantly upon fertilisation regime and production measure, but did not change significantly with latitude. In contrast, phosphorus-addition effect standardised by fertilisation regime and production measure was consistently positive and decreased significantly with latitude. Latitudinal gradient in the standardised phosphorus-addition effect was explained by several mechanisms involving substrate age, climate, vegetation type, edaphic properties and biochemical machinery. This study suggests that latitudinal pattern of terrestrial phosphorus limitation is jointly shaped by macro-scale driving forces and the fundamental structure of life.


Assuntos
Nitrogênio , Fósforo , Clima , Ecossistema , Florestas , Desenvolvimento Vegetal
5.
J Environ Manage ; 296: 113183, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229139

RESUMO

Wetlands are highly productive ecosystem with great potential to store carbon (C) and retain nitrogen (N) and phosphorus (P) in their soil. Changes in vegetation type and land use can affect organic matter inputs and soil properties. This work aimed to examine how these changes affected elemental stoichiometry and C-, N-, and P- associated enzyme activities and wetland soil organic C stock. We quantified organic C concentrations, and stoichiometric ratios of C, N, and P in total and microbial biomass pools, along with the activities and ratios of C-, N-, and P-associated enzymes for soils of natural coastal wetlands with different vegetation types, namely Melaleuca wetland (Melaleuca spp), mangrove forests (Bruguiera spp), and saline marsh (Eleocharis spp). We also compared these natural wetlands to an adjacent sugarcane plantation to understand the effects of vegetation types. Hypothesis-oriented path analysis was used to explore links between these variables and soil organic C stocks. Tidal forested soils (0-30 cm) had the highest organic C, N, and P contents and potential activities of C-, N-, P- acquiring enzymes, compared with other vegetation types. Mangroves soils had the highest total soil C:N and microbial biomass C:P ratios. Microbial biomass C:P ratios were significantly and positively related to total C:P, while microbial biomass N:P ratios were positively associated with total soil C:P and N:P ratios. Path analysis suggested that soil organic C stock was largely explained by total C:P ratio, microbial biomass N:P ratios, total P content, and the ratio of C- and P-associated enzymes. Different types of wetlands have different soil properties and enzymatic activities, implying their different capacity to store and process C and N. The resource quality and stoichiometry direct influence the organic C stock.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , China , Ecossistema , Nitrogênio/análise , Queensland , Rios , Solo
6.
J Environ Manage ; 230: 446-455, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30300859

RESUMO

Nitrogen (N) bioavailability is one of the main limiting factors for microbial activity and vegetation establishment in bauxite-processing residue sand (BRS). Although beneficial effects of biochar on reducing N loss in the early stages of BRS rehabilitation have been observed previously, the underlying mechanisms of this complicated process, particularly the interactions between applied biochar and the plant rhizosphere is largely unknown. This glasshouse study (116 days), investigated the coupled effects of biochar and water stress on N bioavailability in the rhizosphere of ryegrass (Lolium rigidum) grown in BRS amended with di-ammonium phosphate (DAP) fertiliser (at rates of 0 or 2.7 t ha-1) with and without biochar amendment. The applied biochar was characterised as either aged acidic (AC) or alkaline pine (PC) and was mixed with BRS at a rate of 5% v/v under four moisture regimes (50%, 40%, 20% and 7.5% water holding capacity). Amending BRS with AC and PC biochars increased NH4+ retention and decreased cumulative NH3 volatilization within both the rhizosphere and root-free zones compared with fertiliser only treatment. These effects were more pronounced for the AC than PC biochar, suggesting that aged acidic biochar has the great potential for use in rapid establishment of vegetation in BRS disposal areas. The biochar amendment increased cumulative nitrous oxide emissions compared with DAP only treatment, with no significant differences among different moisture regimes. The Control and 20% water holding capacity (WHC) treatment showed the highest dissolved organic carbon (DOC) concentrations compared with other treatments and moisture regimes in the ryegrass rhizosphere, while the highest dissolved organic N concentration were observed in the DAP + AC treatment. Reducing moisture levels below 20% WHC generally decreased microbial biomass carbon (MBC) concentrations and activity in both the rhizosphere and root-free zones of all treatments, while total N generally decreased as moisture levels decreased from 50% to 7.5% WHC. Plant took up more N in the DAP + AC treatment compared with DAP + PC and DAP only treatments, while increasing water stress generally resulted in decreased aboveground biomass.


Assuntos
Carbono/metabolismo , Carvão Vegetal/metabolismo , Nitrogênio/metabolismo , Rizosfera , Água/metabolismo , Óxido de Alumínio/química , Desidratação , Fertilizantes , Lolium , Óxido Nitroso/metabolismo , Fosfatos/metabolismo , Dióxido de Silício/química , Volatilização
7.
Ecol Lett ; 21(3): 335-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314550

RESUMO

The biogeochemical and stoichiometric signature of vegetation fire may influence post-fire ecosystem characteristics and the evolution of plant 'fire traits'. Phosphorus (P), a potentially limiting nutrient in many fire-prone environments, might be particularly important in this context; however, the effects of fire on P cycling often vary widely. We conducted a global-scale meta-analysis using data from 174 soil studies and 39 litter studies, and found that fire led to significantly higher concentrations of soil mineral P as well as significantly lower soil and litter carbon:P and nitrogen:P ratios. These results demonstrate that fire has a P-rich signature in the soil-plant system that varies with vegetation type. Further, they suggest that burning can ease P limitation and decouple the biogeochemical cycling of P, carbon and nitrogen. These effects resemble a transient reversion to an earlier stage of ecosystem development, and likely underpin at least some of fire's impacts on ecosystems and organisms.


Assuntos
Incêndios , Fósforo , Plantas , Solo , Carbono , Ecossistema , Nitrogênio
8.
Glob Chang Biol ; 24(8): 3344-3356, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29450947

RESUMO

Climate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key-associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis-oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low-sand (≤50%) soils. In contrast, available P of the high-sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.


Assuntos
Mudança Climática , Fósforo/análise , Solo/química , Clima , Ecossistema , Umidade , Modelos Teóricos , Chuva , Temperatura
9.
J Environ Manage ; 176: 11-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27031296

RESUMO

Cattle waste products high in nitrogen (N) that enter waterways via rainfall runoff can contribute to aquatic ecosystem health deterioration. It is well established that N leaching from this source can be reduced by plant assimilation, e.g. pasture grass. Additionally, N leaching can be reduced when there is sufficient carbon (C) in the soil such as plant litterfall to stimulate microbial processes, i.e. denitrification, which off-gas N from the soil profile. However, the relative importance of these two processes is not well understood. A soil microcosm experiment was conducted to determine the role of biotic processes, pasture grass and microbial activity, and abiotic processes such as soil sorption, in reducing N leaching loss, during successive additions of bovine urine. Pasture grass was the most effective soil cover in reducing N leaching losses, which leached 70% less N compared to exposed soil. Successive application of urine to the soil resulted in N accumulation, after which there was a breaking point indicated by high N leaching losses. This is likely to be due to the low C:N ratio within the soil profiles treated with urine (molar ratio 8:1) compared to water treated soils (30:1). In this experiment we examined the role of C addition in reducing N losses and showed that the addition of glucose can temporarily reduce N leaching. Overall, our results demonstrated that plant uptake of N was a more important process in preventing N leaching than microbial processes.


Assuntos
Nitrogênio/análise , Solo/química , Urina/química , Movimentos da Água , Poluentes da Água/análise , Água/química , Animais , Austrália , Carbono/análise , Bovinos , Fenômenos Químicos , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Poaceae/química , Microbiologia do Solo , Poluentes do Solo/análise
10.
Microb Ecol ; 70(4): 993-1003, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26066514

RESUMO

Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.


Assuntos
Incêndios , Florestas , Variação Genética , Consórcios Microbianos , Microbiologia do Solo , Solo/química , Compostos de Amônio/análise , Bactérias/genética , Biodiversidade , Carbono/análise , Desnitrificação , Ecossistema , Genes Bacterianos/genética , Nitratos/análise , Nitrogênio/análise , Avaliação Nutricional , Oxigênio/efeitos adversos , RNA Ribossômico 16S/genética
11.
Glob Chang Biol ; 20(7): 2321-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24132817

RESUMO

Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions during the postfire recovery phase.


Assuntos
Carbono/metabolismo , Incêndios , Florestas , Nitrogênio/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Solo/química , Meio Ambiente , Folhas de Planta/química , Folhas de Planta/metabolismo , Queensland , Estações do Ano
12.
Environ Sci Pollut Res Int ; 31(6): 8387-8399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177642

RESUMO

Increasing pollution of plastic waste is one of the major global environmental threats, deteriorating our land, water and air. The shift towards biobased, biodegradable and compostable plastics is considered a green alternative to petroleum-based plastic due to its renewable source or biodegradability. However, there is a misconception about biodegradable plastics and their degradability and behaviour after service life. Biobased, biodegradable and compostable plastics offer various benefits such as less carbon footprint, energy efficiency, independence and eco-safety. On the other hand, there are some disadvantages such as higher cost, limited recycling, misuse of terms and lack of legislation. Also, there is an urgent need for comparable international standard methods to define these materials as biodegradable material, or biocompostable material. There are some standards currently available, however, an in-depth detail and explanation of these standards is still missing. This review outlines the basic definition and chemical structure of biobased, biodegradable and compostable plastics; describes the degradation pathways of biodegradable and compostable plastics; and summarises current key applications of these materials together with possible future applications in different industries. Finally, strategies are developed for minimising the environmental impacts and the need for future research is proposed.


Assuntos
Plásticos Biodegradáveis , Reciclagem , Biodegradação Ambiental , Indústrias , Pegada de Carbono , Plásticos/química
13.
Sci Total Environ ; 912: 169263, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092216

RESUMO

Biochar is an efficient and inexpensive carrier for bacteria that stimulate plant development and growth. In this study, different biopolymer additives (cellulose, xanthan gum, chitin and tryptone) were tested with different addition ratios (1:0.1, 1:0.5 and 1:1) on further enhancing biochar capacity for supporting the growth and activity of Bradyrhizobium japonicum (CB1809). We utilized pine wood biochar (PWBC) pyrolyzed at 400 °C as the base inoculum carrier. The shelf life and survival rate of CB1809 were counted using the colony-forming unit (CFU) method for up to 120 days. Peat served as a standard reference material against which all treatments were compared. Subsequent experiments evaluated the ability of carrier inoculants to promote Glycine max L. (soybean) plant growth and nodulation under different watering regimes, i.e., 55 % water holding capacity (WHC) (D0), 30 % WHC (D1) and, 15 % WHC (D2) using sandy loam soil. Results revealed that among different additives; xanthan gum with 1:0.5 to PWBC [PWBC-xanthan gum(1:0.5)] was observed as a superior formulation in supporting rhizobial shelf life and survival rate of CB1809. In pot experiments, plants with PWBC-xanthan gum(1:0.5) formulation showed significant increase in various physiological characteristics (nitrogenase activity, chlorophyll pigments, membrane stability index, and relative water content), root architecture (root surface area, root average diameter, root volume, root tips, root forks and root crossings), and plant growth attributes (shoot/root dry biomass, shoot/root length, and number of nodules). Additionally, a reduced enrichment of isotopic signatures (δ13C, δ15N) was observed in plants treated with PWBC-xanthan gum(1:0.5), less enrichment of δ15N indicates an inverse link to nodulation and nitrogenase activity, while lower δ13C values indicates effective water use efficiency by plants during drought stress. These results suggest that biopolymers supplementation of the PWBC is useful in promoting shelf life or survival rate of CB1809.


Assuntos
Carvão Vegetal , Rhizobium , Glycine max , Água , Solo , Biopolímeros , Nitrogenase
14.
Artigo em Inglês | MEDLINE | ID: mdl-39340607

RESUMO

Agricultural and forestry biomass wastes, often discarded or burned without adequate management, lead to significant environmental harm. However, cellulose nanocrystals (CNCs), derived from such biomass, have emerged as highly promising materials due to their unique properties, including high tensile strength, large surface area, biocompatibility, and renewability. This review provides a detailed analysis of the lignocellulosic composition, as well as the elemental and proximate analysis of different biomass sources. These assessments help determine the yield and characteristics of CNCs. Detailed discussion of CNC synthesis methods -ranging from biomass pretreatment to hydrolysis techniques such as acid, mineral, solid acid, ionic liquid, and enzymatic methods-are provided. The key physical, chemical, and thermal properties of CNCs are also highlighted, particularly in relation to their industrial applications. Recommendations for future research emphasize the need to optimize CNC synthesis processes, identify suitable biomass feedstocks, and explore new industrial applications.

15.
Sci Total Environ ; 912: 169544, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141972

RESUMO

Environmental disturbances such as drought can impact soil health and the resistance (ability to withstand environmental stress) and resilience (ability to recover functional and structural integrity after stress) of soil microbial functional activities. A paucity of information exists on the impact of drought on soil microbiome and how soil biological systems respond to and demonstrate resilience to drought stress. To address this, we conducted a systematic review and meta-analysis (using only laboratory studies) to assess the response of soil microbial biomass and respiration to drought stress across agriculture, forest, and grassland ecosystems. The meta-analysis revealed an overall negative response of microbial biomass in resistance (-31.6 %) and resilience (-0.3 %) to drought, suggesting a decrease in soil microbial biomass content. Soil microbial respiration also showed a negative response in resistance to drought stress indicating a decrease in soil microbial respiration in agriculture (-17.5 %), forest (-64.0 %), and grassland (-65.5 %) ecosystems. However, it showed a positive response in resilience to drought, suggesting an effective recovery in microbial respiration post-drought. Soil organic carbon (SOC), clay content, and pH were the main regulating factors of the responses of soil microbial biomass and respiration to drought. In agriculture ecosystem, soil pH was primarily correlated with soil microbial respiration resistance and resilience to drought, potentially influenced by frequent land preparation and fertilizer applications, while in forest ecosystem SOC, clay content, and pH significantly impacted microbial biomass and respiration resistance and resilience. In grassland ecosystem, SOC was strongly associated with biomass resilience to drought. The impact of drought stress on soil microbiome showed different patterns in natural and agriculture ecosystems, and the magnitude of microbial functional responses regulated by soil intrinsic properties. This study highlighted the importance of understanding the role of soil properties in shaping microbial responses to drought stress for better ecosystem management.


Assuntos
Microbiota , Resiliência Psicológica , Ecossistema , Solo/química , Secas , Argila , Carbono , Microbiologia do Solo , Biomassa
16.
Sci Total Environ ; 935: 173286, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772492

RESUMO

Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.


Assuntos
Agricultura , Mudança Climática , Microbiologia do Solo , Agricultura/métodos , Solo/química , Microbiota , Nitrogênio/análise , Ciclo do Nitrogênio , Ecossistema , Biodiversidade
17.
J Hazard Mater ; 480: 136043, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39383695

RESUMO

Microplastics (MPs) pollution is recognized as a global emerging threat with serious potential impacts on ecosystems. Our meta-analysis was conducted based on 117 carefully selected publications, from which 2160 datasets were extracted. These publications described experiments in which MPs were added to soil (in laboratory or greenhouse experiments or in the field) after which the soil microbial community was analyzed and compared to a control group. From these publications, we extracted 1315 observations on soil bacterial alpha diversity and richness indices and 845 datasets on gene abundance of bacterial genes related to the soil nitrogen cycle. These data were analyzed using a multiple hierarchical mixed effects meta-analysis. The mean effect of microplastic exposure was a significant decrease of soil bacterial community diversity and richness. We explored these responses for different regulators, namely MPs addition rates, particle size and plastic type, soil texture and land use, and study type. Of the bacterial processes involved in the soil nitrogen cycle, MPs addition significantly promoted assimilation of ammonium, nitrogen fixation and urea decomposition, but significantly inhibited nitrification. These results suggest that MPs contamination may have considerable impacts on soil bacterial community structure and function as well as on the soil nitrogen cycle.

18.
Environ Int ; 192: 109038, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357259

RESUMO

It is widely known that antibiotics can affect the structure and function of soil microbial communities, but the specific degree of impact and controlled factors on different indicators remain inconclusive. We conducted a multiple hierarchical mixed effects meta-analysis on 2564 observations that were extracted from 60 publications, to comprehensively assess the impact of antibiotics on soil microbiota. The results showed that antibiotics had significant negative effects on soil microbial biomass, α-diversity and soil enzyme activity. Under neutral initial soil, when soil was derived from agricultural land or had a fine-textured, the negative impacts of antibiotics on soil microbial community were exacerbated. Both single and mixed additions of antibiotics had significant inhibitory effects on soil microbial enzyme activities. The Random Forest model predicted the following key moderators involved in the effects of antibiotics on the soil microbiome, and antibiotics type, soil texture were key moderators on the severity of soil microbial biomass changes. Soil texture, temperature and single or combined application constitute of antibiotics were the main drivers of effects on soil enzyme activities. The reported results can be helpful to assess the ecological risk of antibiotics in a soil environment and provides a scientific basis for the rational of antibiotics use in the soil environment.

19.
Ecol Evol ; 14(10): e70374, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39391818

RESUMO

Lianas (woody vines and climbing monocots) are increasing in abundance in many tropical forests with uncertain consequences for forest functioning and recovery following disturbances. At a global scale, these increases are likely driven by disturbances and climate change. Yet, our understanding of the environmental variables that drive liana prevalence at regional scales is incomplete and geographically biased towards Latin America. To address this gap, we present a comprehensive study evaluating the combined effects of climate, soil, disturbance and topography on liana prevalence in the Australian Wet Tropics. We established 31 20 × 20 m vegetation plots along an elevation gradient in low disturbance (canopy closure ≥ 75%) and high disturbance (canopy closure ≤ 25%) forest stands. In these plots, all tree and liana (defined as all woody dicot vines and climbing monocots, i.e., rattans) stems ≥ 1 cm DBH were measured and environmental data were collected on climate, soil and topography. Generalised linear models were used with multi-model averaging to quantify the relative effects of the environmental variables on measures of liana prevalence (liana-tree basal area ratio, woody vine basal area and stem density and rattan stem density). Liana prevalence decreased with elevation but increased with disturbance and mean annual precipitation. The increase in the liana-tree ratio with precipitation was more pronounced for highly disturbed sites. Like other tropical regions, disturbance is an important driver of liana prevalence in Australian rainforests and appears to interact with climate to increase liana-tree ratios. The observed increase in liana-tree ratio with precipitation contrasts findings from elsewhere but is confounded by correlated changes in elevation and temperature, which highlights the importance of regional studies. Our findings show that forests with high disturbance and climatic conditions favourable to lianas are where lianas most likely to outcompete trees and impede forest recovery.

20.
Waste Manag ; 166: 96-103, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167710

RESUMO

Microplastics (MPs) are a major emerging contaminant in agroecosystems, due to their significant resistance to degradation in terrestrial environments. Although previous investigations have reported the harmful effects of MPs contamination on soil biological properties, still little is known about the characteristics and fate of MPs in biosolid-amended soils and their risks to soil biota, particularly earthworms. We determined microplastics' concentration, size distribution, and chemical composition in 3 sewage sludge biosolids and 6 biosolid-amended agricultural soils. In addition, we assessed the potential short-term risks of MPs to earthworms' (Amynthas Gracilis and Eisenia Fetida) survival rate and fitness in an environmentally relevant exposure study (28 days). Biosolid-amended soils (1000-3100 MPs kg-1 dry mass) showed ≈30 times lower MPs content than investigated biosolids (55400-73800 MPs kg-1 dry mass), with microplastic fragment to fibre ratios between 0.2 and 0.6 and 0.3-0.4 in soils and biosolids, respectively. Total MPs dry mass was also ≈19 times lower in assessed soils (12-26 mg kg-1) than biosolids (328-440 mg kg-1). On average 77% and 80% of plastic fragments had a lower dimension than 500 µm, while 50% and 67% of plastic fibres had a length of less than 1000 µm in soil and biosolid samples, respectively. Polyethylene (23.6%) was the major source of microplastic contamination in biosolid-amended soils, while polyethylene terephthalate (41.6%) showed the highest concentration in biosolid samples. Spiked polyethylene MPs did not show any significant effect on earthworms' survival rate (93-99%). However, biosolid application significantly (P < 0.05) decreased survival rate of Eisenia Fetida (81%) but showed no significant effect on Amynthas Gracilis (93%). Biosolid amendment significantly (P < 0.05) decreased earthworms' growth rate, with higher impact on Eisenia Fetida than Amynthas Gracilis, while there were no significant differences between control and microplastic spiked treatments. The overall decrease in MPs concentration of earthworm casts, compared with initial MPs concentrations in soil, indicated that the investigated species did not bioaccumulate MPs during the exposure experiment.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/metabolismo , Microplásticos/farmacologia , Plásticos , Biossólidos , Poluentes do Solo/análise , Solo/química , Polietileno , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA