Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Xenotransplantation ; 27(2): e12569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31777103

RESUMO

BACKGROUND: Parkinson's disease (PD) features the motor control deficits resulting from irreversible, progressive degeneration of dopaminergic (DA) neurons of the nigrostriatal pathway. Although intracerebral transplantation of human fetal ventral mesencephalon (hfVM) has been proven effective at reviving DA function in the PD patients, this treatment is clinically limited by availability of hfVM and the related ethical issues. Homologous tissues to hfVM, such as porcine fetal ventral mesencephalon (pfVM) thus present a strong clinical potential if immune response following xenotransplantation could be tamed. Olfactory ensheathing cells (OECs) are glial cells showing immunomodulatory properties. It is unclear but intriuging whether these properties can be applied to reducing immune response following neural xenotransplantation of PD. METHODS: To determine whether OECs may benefit neural xenografts for PD, different compositions of grafting cells were transplanted into striatum of the PD model rats. We used apomorphine-induced rotational behavior to evaluate effectiveness of the neural grafts on reviving DA function. Immunohistochemistry was applied to investigate the effect of OECs on the survival of neuroxenografts and underlying mechanisms of this effect. RESULTS: Four weeks following the xenotransplantation, we found that the PD rats receiving pfVM + OECs co-graft exhibited a better improvement in apomorphine-induced rotational behavior compared with those receiving only pfVM cells. This result can be explained by higher survival of DA neurons (tyrosine hydroxylase immunoreactivity) in grafted striatum of pfVM + OECs group. Furthermore, pfVM + OECs group has less immune response (CD3+ T cells and OX-6+ microglia) around the grafted area compared with pfVM only group. These results suggest that OECs may enhance the survival of the striatal xenografts via dampening the immune response at the grafted sites. CONCLUSIONS: Using allogeneic OECs as a co-graft material for xenogeneic neural grafts could be a feasible therapeutic strategy to enhance results and applicability of the cell replacement therapy for PD.


Assuntos
Xenoenxertos/imunologia , Mesencéfalo/transplante , Bulbo Olfatório/citologia , Doença de Parkinson/terapia , Transplante Heterólogo , Animais , Transplante de Células/métodos , Modelos Animais de Doenças , Dopamina/metabolismo , Transplante de Tecido Fetal/métodos , Masculino , Mesencéfalo/imunologia , Mesencéfalo/metabolismo , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Transplante Heterólogo/métodos
2.
Molecules ; 24(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959762

RESUMO

Serotonin (5-HT) plays a crucial role in modulating the afferent fiber discharge rate in the inferior colliculus, auditory cortex, and other nuclei of the ascending auditory system. Resveratrol, a natural polyphenol phytoalexin, can inhibit serotonin transporters (SERT) to increase synaptic 5-HT levels. In this study, we investigated the effects of resveratrol on noise-induced damage in the serotonergic system. Male Sprague-Dawley rats were anaesthetized and exposed to an 8-kHz tone at 116 dB for 3.5 h. Resveratrol (30 mg/kg, intraperitoneal injection [IP]) and citalopram (20 mg/kg, IP), a specific SERT inhibitor used as a positive control, were administered once a day for four consecutive days, with the first treatment occurring 2 days before noise exposure. Auditory brainstem response testing and positron emission tomography (PET) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, a specific radioligand for SERT) were used to evaluate functionality of the auditory system and integrity of the serotonergic system, respectively, before and after noise exposure. Finally, immunohistochemistry was performed 1 day after the last PET scan. Our results indicate that noise-induced serotonergic fiber loss occurred in multiple brain regions including the midbrain, thalamus, hypothalamus, striatum, auditory cortex, and frontal cortex. This noise-induced damage to the serotonergic system was ameliorated in response to treatment with resveratrol and citalopram. However, noise exposure increased the hearing threshold in the rats regardless of drug treatment status. We conclude that resveratrol has protective effects against noise-induced loss of SERT.


Assuntos
Resveratrol/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/química , Humanos , Imuno-Histoquímica , Tomografia por Emissão de Pósitrons , Ratos , Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 111(47): 16931-6, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385630

RESUMO

The piriform cortex (PCX) is the largest component of the olfactory cortex and is hypothesized to be the locus of odor object formation. The distributed odorant representation found in PCX contrasts sharply with the topographical representation seen in other primary sensory cortices, making it difficult to test this view. Recent work in PCX has focused on functional characteristics of these distributed afferent and association fiber systems. However, information regarding the efferent projections of PCX and how those may be involved in odor representation and object recognition has been largely ignored. To investigate this aspect of PCX, we have used the efferent pathway from mouse PCX to the orbitofrontal cortex (OFC). Using double fluorescent retrograde tracing, we identified the output neurons (OPNs) of the PCX that project to two subdivisions of the OFC, the agranular insula and the lateral orbitofrontal cortex (AI-OPNs and LO-OPNs, respectively). We found that both AI-OPNs and LO-OPNs showed a distinct spatial topography within the PCX and fewer than 10% projected to both the AI and the LO as judged by double-labeling. These data revealed that the efferent component of the PCX may be topographically organized. Further, these data suggest a model for functional organization of the PCX in which the OPNs are grouped into parallel output circuits that provide olfactory information to different higher centers. The distributed afferent input from the olfactory bulb and the local PCX association circuits would then ensure a complete olfactory representation, pattern recognition capability, and neuroplasticity in each efferent circuit.


Assuntos
Córtex Piriforme/anatomia & histologia , Células Receptoras Sensoriais/citologia , Animais , Camundongos , Córtex Piriforme/citologia
4.
Front Behav Neurosci ; 16: 808978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185490

RESUMO

C57BL/6 is the most widely used mouse strain in the laboratories. Two substrains of C57BL/6, C57BL/6J (B6J), and C57BL/6N (B6N) are well-known backgrounds for genetic modification and have been shown difference in quite a few tests, including open field test, rotarod test, and Morris water maze. However, difference between these two substrains in olfaction-dependent behaviors remains unknown. Here, we used olfactory two-alternative choice task, which is modified to have two training stages, to evaluate animals' ability in instrumental learning and olfactory association. In the first (rule learning) stage, the mice were trained to use the operant chamber to collect water rewards. An odor cue was provided in the procedure, with no indication about reward locations. In the following (discrimination learning) stage, two odor cues were provided, with each indicating a specific water port. The animals were rewarded upon correct port choices following cue deliveries. We found that during young adulthood (7-10 weeks old), proportionally more B6J than B6N mice were able to pass rule learning (58.3% vs. 29.2%) and ultimately acquire this task (54.2% vs. 25%), with the two substrains showing similar pass rates in discrimination learning (92.9% vs. 85.7%). Surprisingly, at a more mature age (17 weeks old), this substrain difference disappeared. Mature B6N mice had a significant improvement in pass percentages of rule learning and overall task, whereas similar improvement was not observed in the B6J counterparts. Instead, mature B6J mice had an improved speed in rule learning and overall task. We further examined behavioral patterns of 8-week-old B6J and B6N mice in the olfactory habituation or dishabituation test. We observed normal olfactory habituation from subjects of both substrains, with the B6J mice exhibiting stronger investigative responses to newly presented odorants. These results reveal for the first time that B6J and B6N mice are different in acquisition processes of a behavioral task that requires instrumental learning and olfactory association, and that maturation appears to employ different effects on these two substrains during these processes. Furthermore, young adult B6J and B6N mice might be similar in olfactory habituation but different in the olfactory aspects of novelty seeking.

5.
J Neurophysiol ; 106(6): 3136-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21918001

RESUMO

Experience shapes both central olfactory system function and odor perception. In piriform cortex, odor experience appears critical for synthetic processing of odor mixtures, which contributes to perceptual learning and perceptual acuity, as well as contributing to memory for events and/or rewards associated with odors. Here, we examined the effect of odor fear conditioning on piriform cortical single-unit responses to the learned aversive odor, as well as its effects on similar (overlapping mixtures) in freely moving rats. We found that odor-evoked fear responses were training paradigm dependent. Simple association of a condition stimulus positive (CS+) odor with foot shock (unconditioned stimulus) led to generalized fear (cue-evoked freezing) to similar odors. However, after differential conditioning, which included trials where a CS- odor (a mixture overlapping with the CS+) was not paired with shock, freezing responses were CS+ odor specific and less generalized. Pseudoconditioning led to no odor-evoked freezing. These differential levels of stimulus control over freezing were associated with different training-induced changes in single-unit odor responses in anterior piriform cortex (aPCX). Both simple and differential conditioning induced a significant decrease in aPCX single-unit spontaneous activity compared with pretraining levels while pseudoconditioning did not. Simple conditioning enhanced mean receptive field size (breadth of tuning) of the aPCX units, while differential conditioning reduced mean receptive field size. These results suggest that generalized fear is associated with an impairment of olfactory cortical discrimination. Furthermore, changes in sensory processing are dependent on the nature of training and can predict the stimulus-controlled behavioral outcome of the training.


Assuntos
Condicionamento Psicológico/fisiologia , Medo , Aprendizagem/fisiologia , Condutos Olfatórios/fisiologia , Vigília , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Estimulação Elétrica , Eletrodos , Generalização Psicológica , Masculino , Odorantes , Condutos Olfatórios/citologia , Ratos , Ratos Long-Evans , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia
6.
Sci Rep ; 11(1): 8349, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863910

RESUMO

The piriform cortex (PC) is a major cortical processing center for the sense of smell that receives direct inputs from the olfactory bulb. In mice, the PC consists of three neuronal layers, which are populated by cells with distinct developmental origins. One origin of PC neurons is the pool of Dbx1-expressing neural progenitors located in the ventral pallium at the pallial-subpallial boundary. Since the precise mechanisms of PC neuron development are largely unknown, we sought to define the distribution, timing of neurogenesis, morphology and projection patterns of PC neurons from the Dbx1 lineage. We found that Dbx1-lineage neurons are preferentially distributed in layer 2 and enriched in the ventral portion of the PC. Further, Dbx1 neurons are early-born neurons and contribute to most neuronal subtypes in the PC. Our data also revealed an enrichment of Dbx1-lineage neurons in the ventral anterior PC that project to the orbitofrontal cortex. These findings suggest a specific association between the developmental origin of PC neurons and their neuronal properties.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Piriforme/citologia , Córtex Piriforme/fisiologia , Olfato , Animais , Expressão Gênica , Camundongos Knockout , Bulbo Olfatório/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia
7.
Cells ; 8(11)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718058

RESUMO

Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson's disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.


Assuntos
Mesencéfalo/metabolismo , Mesencéfalo/transplante , Doença de Parkinson/terapia , Células de Sertoli/metabolismo , Animais , Modelos Animais de Doenças , Xenoenxertos , Imuno-Histoquímica , Masculino , Mesencéfalo/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons , Ratos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Heterólogo
8.
J Neurosci ; 27(7): 1534-42, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17301162

RESUMO

Despite a remarkably precise spatial representation of odorant stimuli in the early stages of olfactory processing, the projections to the olfactory (piriform) cortex are more diffuse and show characteristics of a combinatorial array, with extensive overlap of afferent inputs and widespread intracortical association connections. Furthermore, although there is increasing evidence for the importance of temporal structure in olfactory bulb odorant-evoked output, little is known about how this temporal patterning is translated within cortical neural ensembles. The present study used multichannel electrode arrays and paired single-unit recordings in rat anterior piriform cortex to test several predictions regarding ensemble coding in this system. The results indicate that odorants evoke activity in a spatially scattered ensemble of anterior piriform cortex neurons, and the ensemble activity includes a rich temporal structure. The most pronounced discrimination between different odorants by cortical ensembles occurs during the first inhalation of a 2 s stimulus. The distributed spatial and temporal structure of cortical activity is present at both global and local scales, with neighboring single units contributing to coding of different odorants and active at different phases of the respiratory cycle. Finally, cross-correlogram analyses suggest that cortical unit activity reflects not only afferent input from the olfactory bulb but also intrinsic activity within the intracortical association fiber system. These results provide direct evidence for predictions stemming from anatomical- and theoretical-based models of piriform cortex.


Assuntos
Mapeamento Encefálico , Odorantes , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Masculino , Ratos , Ratos Long-Evans , Olfato/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Fatores de Tempo
9.
Eur Neuropsychopharmacol ; 26(1): 92-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612383

RESUMO

The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Proteínas de Ligação a RNA/metabolismo , Estilbenos/farmacologia , Animais , Benzilaminas , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Corticosterona/sangue , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Distribuição Aleatória , Ratos Sprague-Dawley , Resveratrol , Serotoninérgicos/toxicidade
10.
Sci Rep ; 6: 38695, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941910

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cinanserina/análogos & derivados , Dextrometorfano/farmacologia , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Radioisótopos do Iodo , Imageamento por Ressonância Magnética , N-Metil-3,4-Metilenodioxianfetamina , Primatas , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA