RESUMO
Primary open-angle glaucoma (POAG) is the most common type of glaucoma. Using whole-exome sequencing, we identified two independent families diagnosed as POAG from the China with a novel EFEMP1 variant (Exon3, c.175A>C p.Met59Leu); Three previously reported variants c.1160G>A p.R387Q, c.1189T>C p.Y397H, and c.1429C>T p.R477C in EFEPM1 from 55 sporadic POAG individuals were also identified. The variant c.175A>C p.Met59Leu co-segregated with the disease phenotype within the families. Immunoprecipitation and western blot assays showed that all three EFEMP1 mutants (p.Met59Leu, pArg140Trp, pArg345Trp) increased intracellular protein aggregations, and pMet59Leu and pArg140Arg also enhanced their extracellular proteins secretion, compared to WT in HEK293T. The differential regulations to endoplasmic reticulum (ER) stress markers ATF4, GPR78/94, and CHOP, and differential phosphorylation activations to CREB at Ser133, AKT at Ser473, p44/42 at Thr202/Tyr204, and STAT3 at Tyr705, were also detected among the mutants and WT. Finally, we revealed a significant increment of intraocular pressure and obvious reduction of RGC cells at the sixth week following intravitreal injection of adenovirus 5 (Ad5) expressing in pMet59Leu compared to WT and GFP controls. Together, variant c.175A>C p.Met59Leu in EFEMP1 is pathogenic and different mutants in EFEMP1 triggered distinct signaling pathways, explaining the reason of mutation-dependent disease phenotypes of EFEMP1.
Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Camundongos , Animais , Glaucoma de Ângulo Aberto/genética , Células HEK293 , Mutação , Estresse do Retículo Endoplasmático/genética , Proteínas do Olho/genética , Proteínas da Matriz Extracelular/genéticaRESUMO
To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.
Assuntos
Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/sangue , Glaucoma de Ângulo Aberto/classificação , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Lipoproteínas LDL/sangue , Lipoproteínas/sangue , Lipoproteínas/classificação , Pressão Intraocular , LDL-Colesterol/sangue , Estudos de Casos e Controles , China , Povo Asiático , Colesterol/sangue , População do Leste AsiáticoRESUMO
Both PRPF31 and PRPH2 are the causative genes for retinitis pigmentosa. And both of them are associated with the balance of rhodopsin. In this study, we aim to investigate the co-expression and interaction of PRPF31 and PRPH2. We used PRPF31-eGFP, PRPF31-3xFlag and PRPH2-mCherry vectors were transfected into HEK293T and APRE-19 cells. Immunoblotting and co-immunoprecipitation (Co-IP) were used for gene expression validation and protein interaction. Immunofluorescence staining assay was used to test the co-localization analysis of PRPF31 and PRPH2. Co-IP experiments showed that PRPF31 could be pulled down with an anti-PRPH2 antibody. There was co-localization between PRPF31 and PRPH2 in HEK293T, APRE-19 and mouse retina. The Co-IP and co-localization experiments suggest that PRPF31 interacted with PRPH2.
Assuntos
Retinose Pigmentar , Rodopsina , Animais , Proteínas do Olho/genética , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Mutação , Linhagem , Periferinas , Retinose Pigmentar/genética , Rodopsina/genéticaRESUMO
Periodontal ligament (PDL) stem cell properties are critical in the periodontal tissue regeneration for periodontitis. Previously, we have demonstrated that cigarette smoking attenuates PDL-derived stem cell (PDLSC) regenerative properties. Here, we report the findings on the regenerative properties of human PDLSCs with different donor ages and the underlying mechanisms. Human PDLSCs from 18 independent donors were divided into different age groups (≤ 20, 20-40, and > 40 years old). The proliferation of PDLSCs with donor age of ≤ 20 years old was significantly higher than that of the 20-40- and > 40-years-old groups, whereas the migration of PDLSCs with donor age of ≤ 20 and 20-40 years old was significantly higher than that of the > 40-years-old group. Moreover, the mesodermal lineage differentiation capabilities of PDLSCs were also higher in the donor age group of ≤ 20 years old than the donor age of > 40 years old. In addition, shorter telomere length and lower expression of SSEA4 were found in PDLSCs with donor age of > 40 years old, compared with those with donor age of ≤ 20-years-old group. Besides, PDLSCs with donor age of 20-40 and > 40 years old had higher IL6 and CXCL8 gene expressions. In summary, results from this study revealed the attenuated proliferation, migration, and mesodermal lineage differentiation properties in human PDLSCs with older donor ages. Donor age of PDLSCs should be considered as the selection criteria for the periodontal tissue regeneration treatment.
Assuntos
Fatores Etários , Periodontite Crônica/terapia , Ligamento Periodontal/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Células-Tronco/citologia , Telômero/ultraestrutura , Adulto , Proliferação de Células , Células Cultivadas , Feminino , Regeneração Tecidual Guiada Periodontal , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Osteogênese , Adulto JovemRESUMO
RATIONALE: Very-low-density lipoprotein receptor (VLDLR) involves in ocular neovascularization, a major cause of severe vision loss. However, the underlying molecular mechanisms were not completely clarified. Here, we aimed to investigate roles of circular RNAs (circRNAs) in VLDLR-associated ocular neovascularization. METHODS: Vldlr knockout (Vldlr-/-, ko), Robo4 knockout (Robo4-/-, ko) and wild-type (WT) mice were used. Mouse model of oxygen induced retinopathy (OIR) and high-throughput sequence were performed to profile the differential expression of circRNA and transcripts. RNase R treatment, Sanger PCR sequencing and quantitative polymerase chain reaction (qPCR) were used to validate candidate circRNAs and their expression patterns. Choroidal sprouting assay ex vivo and laser induction choroid neovascularization were used to determine the expression and functions of QKI/CircSlc17a5 on choroidal neovascularization. RESULTS: In macrophage and ocular tissues derived from Vldlr (Vldlr-/-,Vldlr ko) or Robo4 (Robo4-/-,Robo4 ko) deficiency as well as wild-type (WT) mice, Quaking (Qki) expression was significantly down-regulated in Vldlr deficiency compared to WT and Robo4 deficiency groups. Ectopic VLDLR expression or Reelin stimulation increased expression of QKI in bEnd.3 cells. Circular RNA sequencing uncovered that VLDLR regulated the biogenesis of certain circular RNAs, including the circSlc17a5. The number of Circular RNAs increased in mice treated with OIR. QKI mediated the biogenesis of circSlc17a5, which was an important regulator of choroidal angiogenesis. CONCLUSION: CircSlc17a5 regulated by VLDLR/QKI plays important roles in the choroidal angiogenesis.
Assuntos
Neovascularização de Coroide , Camundongos Knockout , RNA Circular , Receptores de LDL , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Reelina , Transdução de Sinais , Camundongos Endogâmicos C57BL , Corioide/metabolismo , Corioide/irrigação sanguínea , Modelos Animais de Doenças , AngiogêneseRESUMO
Additive manufacturing (AM) holds great potential for processing natural polymer hydrogels into 3D scaffolds exploitable for tissue engineering and in vitro tissue modelling. The aim of this research activity was to assess the suitability of computer-aided wet-spinning (CAWS) for AM of hyaluronic acid (HA)/chitosan (Cs) polyelectrolyte complex (PEC) hydrogels. A post-printing treatment based on HA chemical cross-linking via transesterification with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was investigated to enhance the structural stability of the developed scaffolds in physiological conditions. PEC formation and the esterification reaction were investigated by infrared spectroscopy, thermogravimetric analysis, evolved gas analysis-mass spectrometry, and differential scanning calorimetry measurements. In addition, variation of PMVEMA concentration in the cross-linking medium was demonstrated to strongly influence scaffold water uptake and its stability in phosphate buffer saline at 37 °C. The in vitro cytocompatibility of the developed hydrogels was demonstrated by employing the murine embryo fibroblast Balb/3T3 clone A31 cell line, highlighting that PMVEMA cross-linking improved scaffold cell colonization. The results achieved demonstrated that the developed hydrogels represent suitable 3D scaffolds for long term cell culture experiments.
Assuntos
Quitosana , Camundongos , Animais , Quitosana/química , Ácido Hialurônico/química , Hidrogéis/química , Engenharia Tecidual/métodos , Linhagem Celular , Alicerces Teciduais/químicaRESUMO
PURPOSE: Investigate the oxylipin profiles in the aqueous humor of primary open-angle glaucoma (POAG) patients. METHODS: Aqueous humor samples were collected from 17 POAG patients and 15 cataract subjects and subjected to a liquid chromatography/mass spectrometry (LC-MS) analysis to detect the oxylipins. The prediction potential of the differential abundant oxylipins was assessed by the receiver operating characteristic (ROC) curves. Pathway and correlation analyses on the oxylipins and clinical and biochemical parameters were also conducted. RESULTS: The LC-MS analysis detected a total of 76 oxylipins, of which 29 oxylipins reached the detection limit. The multivariate analysis identified five differential abundant oxylipins, 15-keto-prostaglandin F2 alpha (15-kPGF2α), Leukotriene B4 (LTB4), 12,13-Epoxyoctadecenoic acid (12,13-Epome), 15-Hydroxyeicosatetraenoic acid (15-HETE) and 11-Hydroxyeicosatetraenoic acid (11-HETE). The five oxylipins are enriched in the arachidonic acid metabolism and linoleic acid metabolism pathways. Pearson correlation analysis showed that 11-HETE was positively correlated with intraocular pressure and central corneal thickness and negatively with cup/disk area ratio in the POAG patients. In addition, 15-kPGF2α was moderately and positively correlated with the mean deviation (MD) of visual field defect, and LTB4 was moderately and negatively correlated with macular thickness. CONCLUSIONS: This study revealed the oxylipin profile in the aqueous humor of POAG patients. Oxylipins involved in the arachidonic acid metabolism pathway could play a role in POAG, and anti-inflammatory therapies could be potential treatment strategies for POAG.
Assuntos
Humor Aquoso , Glaucoma de Ângulo Aberto , Oxilipinas , Humanos , Humor Aquoso/metabolismo , Humor Aquoso/química , Glaucoma de Ângulo Aberto/metabolismo , Oxilipinas/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Cromatografia Líquida , Pressão IntraocularRESUMO
Purpose: to determine the metabolomics profiles in the plasma samples of primary open-angle glaucoma (POAG) patients. Methods: The plasma samples from 20 POAG patients under intraocular pressure (IOP)-lowering medication treatment and 20 control subjects were subjected to the untargeted metabolomics analysis, among which 10 POAG patients and 10 control subjects were further subjected to the oxylipin-targeted metabolomics analysis by liquid chromatography-mass spectrometry analysis. The prediction accuracy of the differentially abundant metabolites was assessed by the receiver operating characteristic curves. Pathway analysis and correlation analysis on the differentially abundant metabolites and clinical and biochemical parameters were also conducted. Results: Untargeted metabolomics profiling identified 33 differentially abundant metabolites in the POAG patients, in which the metabolism of linoleic acid, α-linolenic acid, phenylalanine, and tricarboxylic acid cycle were enriched. The correlation analysis indicated that the differentially abundant metabolites were associated with central corneal thickness, peripapillary retinal nerve fiber layer thickness, visual field defects, and lymphocytes. The oxylipin-targeted metabolomics analysis identified 15-keto-Prostaglandin F2 alpha, 13,14-Dihydro-15-keto-prostaglandin D2, 11-Dehydro-thromboxane B2, 8,9-Epoxyeicosatrienoic acid, and arachidonic acid to be significantly decreased in the POAG patients and enriched in the arachidonic acid (AA) pathway. Conclusions: This study revealed that the metabolites in the arachidonic acid metabolism pathway are differentially abundant, suggesting high IOP may not be the only detrimental factor for optic nerve cell damage in this group of POAG patients. Lipid metabolism instability-mediated alterations in oxylipins and AA pathways may be important in POAG, suggesting that oxidative stress and immune-related inflammation could be valuable directions for future therapeutic strategies.
Assuntos
Glaucoma de Ângulo Aberto , Humanos , Oxilipinas , Ácido Araquidônico , Retina , Pressão IntraocularRESUMO
Non-adherent culture is critical for the transdifferentiation of stem cells from mesoderm to neuroectoderm. Sphere culture has been reported to directly induce the adipose tissue cells to neural stem cells. Here we aimed to evaluate continuous non-adherent culture on the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage. Human ASCs were induced into retinal lineage by the treatment of noggin, dickkopf-related protein 1, and IGF-1 (NDI) under adherent and non-adherent culture. The NDI induction treatment with the adherent culture for 21 days promoted robust expression of retinal markers in the induced ASCs as compared to those without NDI induction on the adherent culture. With continuous non-adherent culture for 21 days, human ASCs could highly express retinal marker genes even without NDI induction treatment as compared to those on the adherent culture. The combination of continuous non-adherent culture with the NDI induction did not show a significant upregulation of the retinal marker expression as compared to either NDI induction with the adherent culture or continuous non-adherent culture without NDI induction treatment. In summary, both non-adherent culture and NDI induction medium could independently promote the transdifferentiation of human ASCs into retinal lineage. Yet, their combination did not produce an enhancement effect.
RESUMO
Long-chain fatty acids (LCFAs) are one of the main energy-supplying substances in the body. LCFAs with different lengths and saturations may have contrasting biological effects that exacerbate or alleviate progress against a variety of systemic disorders of lipid metabolism in organisms. Nonalcoholic fatty liver disease is characterized by chronic inflammation and steatosis, mainly caused by the ectopic accumulation of lipids in the liver, especially LCFAs. CD36 is a scavenger receptor that recognizes and mediates the transmembrane absorption of LCFAs and is expressed in a variety of cells throughout the body. In previous studies, our group found that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) has the biological effect of targeting CD36 to inhibit oxidized low-density lipoprotein lipotoxicity-induced lipid metabolism disorder; it has an ω-carboxyl physiologically active center and is structurally similar to LCFAs. However, the biological mechanism of oxLig-1 binding to CD36 and competing for binding to different types of LCFAs is still not clear. In this study, molecular docking and molecular dynamics simulation were utilized to simulate and analyze the binding activity between oxLig-1 and different types of LCFAs to CD36 and confirmed by the enzyme-linked immunosorbent assay (ELISA) method. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) platform was applied to predict the drug-forming properties of oxLig-1, and HepG2 cells model of oleic acid and nonalcoholic fatty liver disease (NAFLD) model mice were validated to verify the biological protection of oxLig-1 on lipid lowering. The results showed that there was a co-binding site of LCFAs and oxLig-1 on CD36, and the binding driving forces were mainly hydrogen bonding and hydrophobic interactions. The binding abilities of polyunsaturated LCFAs, oxLig-1, monounsaturated LCFAs, and saturated LCFAs to CD36 showed a decreasing trend in this order. There was a similar decreasing trend in the stability of the molecular dynamics simulation. ELISA results similarly confirmed that the binding activity of oxLig-1 to CD36 was significantly higher than that of typical monounsaturated and saturated LCFAs. ADMET prediction results indicated that oxLig-1 had a good drug-forming property. HepG2 cells model of oleic acid and NAFLD model mice study results demonstrated the favorable lipid-lowering biological effects of oxLig-1. Therefore, oxLig-1 may have a protective effect by targeting CD36 to inhibit the excessive influx and deposition of lipotoxicity monounsaturated LCFAs and saturated LCFAs in hepatocytes.
RESUMO
AIMS: Diabetic retinopathy (DR) is a significant global public health concern. Alternative, safe, and cost-effective pharmacologic approaches are warranted. We aimed to investigate the therapeutic potential of nattokinase (NK) for early DR and the underlying molecular mechanism. METHODS: A mouse model of diabetes induced by streptozotocin was utilized and NK was administered via intravitreal injection. Microvascular abnormities were evaluated by examining the leakage from blood-retinal barrier dysfunction and loss of pericytes. Retinal neuroinflammation was examined through the assessment of glial activation and leukostasis. The level of high mobility group box 1 (HMGB1) and its downstream signaling molecules was evaluated following NK treatment. RESULTS: NK administration significantly improved the blood-retinal barrier function and rescued pericyte loss in the diabetic retinas. Additionally, NK treatment inhibited diabetes-induced gliosis and inflammatory response and protected retinal neurons from diabetes-induced injury. NK also improved high glucose-induced dysfunction in cultured human retinal micrangium endothelial cells. Mechanistically, NK regulated diabetes-induced inflammation partially by modulating HMGB1 signaling in the activated microglia. CONCLUSIONS: This study demonstrated the protective effects of NK against microvascular damages and neuroinflammation in the streptozotocin-induced DR model, suggesting that NK could be a potential pharmaceutical agent for the treatment of DR.
RESUMO
Deep neural network-based programs can be applied to protein structure modeling by inputting amino acid sequences. Here, we aimed to evaluate the AlphaFold2-modeled myocilin wild-type and variant protein structures and compare to the experimentally determined protein structures. Molecular dynamic and ligand binding properties of the experimentally determined and AlphaFold2-modeled protein structures were also analyzed. AlphaFold2-modeled myocilin variant protein structures showed high similarities in overall structure to the experimentally determined mutant protein structures, but the orientations and geometries of amino acid side chains were slightly different. The olfactomedin-like domain of the modeled missense variant protein structures showed fewer folding changes than the nonsense variant when compared to the predicted wild-type protein structure. Differences were also observed in molecular dynamics and ligand binding sites between the AlphaFold2-modeled and experimentally determined structures as well as between the wild-type and variant structures. In summary, the folding of the AlphaFold2-modeled MYOC variant protein structures could be similar to that determined by the experiments but with differences in amino acid side chain orientations and geometries. Careful comparisons with experimentally determined structures are needed before the applications of the in silico modeled variant protein structures.
Assuntos
Proteínas do Citoesqueleto , Proteínas do Olho , Glicoproteínas , Ligantes , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Citoesqueleto/metabolismo , AminoácidosRESUMO
BACKGROUND: Polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR contains a DNA binding domain (DBD) and a PHA granule binding domain (GBD), it anchors to the promoter region of PHA granule-associated protein (PhaP) to repress phaP expression. However, PhaR will bind to PHB granules and be released from phaP promoter region when PHA granules are formed in vivo, initiating expression of phaP gene. Based on this regulatory mechanism, a bacterial two-hybrid system was developed: PhaR was separated into two parts: DBD was used to fuse with the bait, GBD with the prey, and phaP was replaced by a reporter gene lacZ. However, GBD protein expressed in vivo formed inclusion bodies. Thus, PhaP with strong binding ability to PHB granules was employed to replace GBD. RESULTS: Three model interaction partners bFos, bJun and bATF2 were used to study the feasibility of this bacterial two-hybrid system compared with the controls lacking one or more essential elements of this system. Results showed that bFos, bJun and bATF2 bound tightly in pairs to allow strong expression of ß-galactosidase in different expression levels. In contrast, very weak ß-galactosidase activity was detected in all control groups. CONCLUSION: ß-Galactosidase activity level precisely correlated with the interaction force of tested protein pairs, and very weak ß-galactosidase expression was detected throughout the control groups, which demonstrated the feasibility of this system for studying protein interactions.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 µg/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60- min heating process at 95 °C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages.
Assuntos
Aeromonas hydrophila/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Tensoativos/metabolismo , Aeromonas hydrophila/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Emulsões/metabolismo , Temperatura Alta , Estabilidade Proteica , Fatores de TempoRESUMO
PURPOSE: To determine the expressions of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2) genes in human and mouse ocular cells and comparison to other tissue cells. METHODS: Human conjunctiva and primary pterygium tissues were collected from pterygium patients who underwent surgery. The expression of ACE2 and TMPRSS2 genes was determined in human primary conjunctival and pterygium cells, human ocular and other tissue cell lines, mesenchymal stem cells as well as mouse ocular and other tissues by reverse transcription-polymerase chain reaction (RT-PCR) and SYBR green PCR. RESULTS: RT-PCR analysis showed consistent expression by 2 ACE2 gene primers in 2 out of 3 human conjunctival cells and pterygium cell lines. Expression by 2 TMPRSS2 gene primers could only be found in 1 out of 3 pterygium cell lines, but not in any conjunctival cells. Compared with the lung A549 cells, similar expression was noted in conjunctival and pterygium cells. In addition, mouse cornea had comparable expression of Tmprss2 gene and lower but prominent Ace2 gene expression compared with the lung tissue. CONCLUSION: Considering the necessity of both ACE2 and TMPRSS2 for SARS-CoV-2 infection, our results suggest that conjunctiva would be less likely to be infected by SARS-CoV-2, whereas pterygium possesses some possibility of SARS-CoV-2 infection. With high and consistent expression of Ace2 and Tmprss2 in cornea, cornea rather than conjunctiva has higher potential to be infected by SARS-CoV-2. Precaution is necessary to prevent possible SARS-CoV-2 infection through ocular surface in clinical practice.
Assuntos
Betacoronavirus/metabolismo , Túnica Conjuntiva/anormalidades , Túnica Conjuntiva/metabolismo , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral , Pterígio/metabolismo , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/enzimologia , Betacoronavirus/genética , COVID-19 , Linhagem Celular , Córnea , Humanos , Pulmão/metabolismo , Camundongos , SARS-CoV-2RESUMO
Retinal disease treatment by stem cell-based replacement relies on stem cell differentiation into retinal cells. We previously demonstrated that human periodontal ligament-derived stem cells can be directed into retinal lineage upon induction. Here, we report the transdifferentiation potential of human adipose-derived stem cells (ASCs) into retinal lineage and its enhancement by Notch signaling modulation. Human ASCs, isolated from abdominal fat, expressed mesenchymal but not hematopoietic stem cell markers, and they can differentiate into adipocytes, chondrocytes, and osteoblasts in vitro. Upon noggin/Dkk-1/IGF-1 induction, the treated ASCs showed elevated expression of retinal progenitor, retinal ganglion, and photoreceptor cell markers as well as the glutamate-evoked calcium response, which was not observed in the noninduced cells. Compared to the regular induction treatment, Notch signaling activation by JAG1 enhanced the expression of retinal progenitor and precursor markers without affecting the glutamate-evoked calcium response. In contrast, Notch signaling inhibition by DAPT showed more retinal ganglion cells, but delayed the response to glutamate stimulation. In summary, our results revealed that human ASCs possess a retinal transdifferentiation potential upon noggin/Dkk-1/IGF-1 induction, which can further be enhanced by Notch signaling activation.
RESUMO
Tono-Pen and TonoVet have been used in rabbits to measure intraocular pressure (IOP) and investigate the effect of IOP lowering therapies. Therefore, their reliability and accuracy are very important and deserve careful evaluation. Our results showed that the with-subject deviation (Sw) and intraclass correlation coefficient (ICC) of the TonoVet and Tono-Pen were 0.61 mmHg/0.83 mmHg and 0.97/0.94, respectively for intrasession repeatability. For intersession reproducibility, the Sw and ICC of TonoVet and Tono-Pen were 1.42 mmHg/1.66 mmHg and 0.73/0.67, respectively. For interoperator reproducibility, the Sw and ICC of the TonoVet and Tono-Pen were 0.72 mmHg/1.11 mmHg and 0.91/0.82 respectively. Both TonoVet and Tono-Pen underestimated the IOP measured by manometry. The regression function was: y = 0.8249x + 0.1011 and y =0.6881x + 2.2290 for TonoVet and Tono-Pen, respectively. Our study suggests that both TonoVet and Tono-Pen had excellent intrasession repeatability and inter-operator reproducibility, but good intersession reproducibility. Both TonoVet and Tono-Pen correlated well with manometry, but underestimated the manometric IOP with presence of fixed and proportional biases. These factors should be considered when measuring IOP with Tono-Pen or TonoVet in rabbit eyes.
Assuntos
Pressão Intraocular , Tonometria Ocular/veterinária , Animais , Ritmo Circadiano/fisiologia , Feminino , Humanos , Pressão Intraocular/fisiologia , Coelhos , Reprodutibilidade dos Testes , Tonometria Ocular/instrumentaçãoRESUMO
Polyhydroxyalkanoates (PHA), a family of biopolyesters, have been studied as tissue engineering biomaterials due to their adjustable mechanical properties, biodegradability and tissue compatibility. Amphiphilic PHA granule binding protein PhaP has been shown to be able to bind to hydrophobic surfaces of polymers, especially PHA, via strong hydrophobic interaction. Genes of PhaP and RGD peptides, which are a cell adhesion motif recognized by many cell surface receptors, were successfully expressed and obtained as a pure fusion protein PhaP-RGD in Escherichia coli DH5α. When films of poly(3-hydroxybutyrate-co-3-hydroxy- hexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were coated with PhaP-RGD, their surface hydrophilicities were all increased compared with their corresponding naked (non-coated) films, respectively. Among the three biopolyesters, PHBHHx demonstrated the strongest affinity to PhaP. In vitro study showed that mouse fibroblasts L929 and mouse embryonic fibroblasts NIH/3T3 attached better and grew faster on all three PhaP-RGD coated films compared with their related behaviors on PhaP coated and non-coated films, respectively. Both fibroblasts attached and grew very well on PhaP-RGD coated PHBHHx, PHBV and PLA, even in their serum-free medium, while the non-coated and PhaP coated biopolyesters poorly supported the cell growth if the two fibroblasts were incubated in their serum free medium. These results indicated that PhaP-RGD could be used as a coating material to improve cell growth on hydrophobic biopolyesters for implant tissue engineering purposes.