Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Exp Eye Res ; 210: 108701, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252413

RESUMO

Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Degeneração Retiniana/prevenção & controle , Proteína do Retinoblastoma/deficiência , Animais , Apoptose , Proteína Quinase CDC2/metabolismo , Sobrevivência Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Eletrorretinografia , Inibidores Enzimáticos/farmacologia , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Microscopia de Fluorescência , Purinas/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
2.
Exp Eye Res ; 203: 108417, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358768

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness. Laser-induced nonhuman primate choroidal neovascularization (CNV) is a widely used animal model of neovascular AMD. Subretinal fibrosis (SFb) is the major limiting factor of effective anti-VEGF therapy for neovascular AMD, yet SFb has never been systematically analyzed in the primate CNV model and if VEGF directly affect SFb is unknown. We recruited a large cohort of rhesus macaques to study the occurrence, multimodal imaging and electroretinography (ERG) features, and related cytokines of SFb. Here we show that among 33 rhesus macaques, 88% CNV eyes developed SFb. Spectral domain optical coherence tomography (SD-OCT) identified four types of subretinal hyper-reflective material (SHRM) of SFb in primate. Multimodal imaging is reliable for monitoring SFb and matches the histological results well. Reduced amplitude of oscillatory potentials correlates with the thinning of inner retina layers and is a possible SFb indicator. Iba1+ microglia/macrophage cells infiltrated in the fibrotic lesions, and aqueous cytokine analysis identified four fibrosis-related factors (GM-CSF, IL-10, TGFß2 and VEGF). Unexpectedly, we found sustained expression of VEGF may be an important inducer of SFb, and anti-VEGF therapy actually partially suppresses SFb. Taken together, our data suggest the laser-induced primate SFb model, coupled with multimodal imaging and ERG recording, is a useful system to dissect the pathogenesis and explore the rationale of treatment for SFb; and combined therapy with anti-VEGF and anti-fibrosis agents is necessary for AMD treatment.


Assuntos
Fotocoagulação a Laser/efeitos adversos , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/uso terapêutico , Animais , Humor Aquoso/metabolismo , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Citocinas/metabolismo , Eletrorretinografia , Feminino , Fibrose/diagnóstico por imagem , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/metabolismo , Angiofluoresceinografia , Injeções Intravítreas , Macaca mulatta , Masculino , Imagem Multimodal , Estimulação Luminosa , Ranibizumab/uso terapêutico , Retina/metabolismo , Tomografia de Coerência Óptica
3.
Ophthalmic Res ; 64(2): 168-177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32674100

RESUMO

The gut microbiome has important physiological functions and plays an indispensable role in the human body. Currently, there are an increasing number of studies revealing the close correlation between dysbiosis of the gut microbiome and a variety of autoimmune diseases, including autoimmune uveitis. This brief review summarizes recent literature regarding the relationship between dysbiosis and the occurrence and development of autoimmune uveitis. Dysbiosis participates in the pathogenesis of autoimmune uveitis largely by 4 mechanisms: antigenic mimicry, disturbance of intestinal immune homeostasis, destruction of the intestinal barrier, and reduction of beneficial anti-inflammatory metabolites. Further elucidation of these mechanisms will facilitate the treatment of the gut-microbiome-relevant autoimmune diseases by potential therapeutic strategies, such as antibiotics, probiotics, diet modifications, and fecal microbial transplantation.


Assuntos
Doenças Autoimunes/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata , Uveíte/imunologia , Animais , Humanos
4.
Appl Microbiol Biotechnol ; 103(19): 8075-8086, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31463546

RESUMO

Foot-and-mouth disease virus (FMDV) has led to serious losses in the farming industry worldwide, particularly in cattle and swine. In developing countries, the control and eradication of FMD rely upon vaccination, in which the inactivated vaccine is predominant. In the preparation of inactivated vaccine, a series of purification methods were used to remove non-structural proteins (NSPs). It is necessary to develop a quantitative detection method of residual NSP and confirm a threshold value for the evaluation of the vaccine. Meanwhile, it is also important to develop a sensitive and rapid diagnostic method to distinguish infected animals from vaccinated animals (DIVA). In this study, three monoclonal antibodies (MAbs) against NSP 3ABC, designated 2G5, 9E2, and 1E10, were used. Subsequently, a series of overlapping peptides were expressed using a prokaryotic expression system to determine the minimal epitopes identified by the MAbs. Three linear B cell epitopes (BCEs), "92EYIEKA97" "23EGPYAGPLE31" and "209EPHH212", were identified by MAbs 2G5, 9E2, and 1E10, respectively. Alanine-scanning mutagenesis analysis confirmed the critical amino acid in these epitopes. The epitope "92EYIEKA97" is located in 3A, which is deleted in some natural deletion mutants that result in a change in virus tropism. MAb 9E2 that identified the epitope "23EGPYAGPLE31" reacted with 3B1 and 3B2, but did not react with 3B3. In combination with sequence alignment analysis, the epitope "23EGPYAGPLE31" is highly conserved among different FMDV isolates. Preliminary screening using the known positive and negative sera indicated the MAb 9E2 has the potential for the development of a diagnostic method for DIVA. The residual NSP in inactivated vaccines can be detected using 9E2-HRP, which indicated the MAb 9E2 is able to evaluate inactivated vaccines. The four-amino acid epitope is the first reported to date that is recognized by 1E10. These results provide valuable insight into the diagnosis of DIVA and the NSP residual evaluation in inactivated vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Vírus da Febre Aftosa/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Camundongos
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(3): 305-310, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31631594

RESUMO

OBJECTIVE: To determine the effects of three histone methylase inhibitors UNC1999, DZNep and GSK343 on the survival, apoptosis and cell cycle of non-hodgkin's lymphoma Raji cells. METHODS: PCR amplified 16 and 18 exons of enhancer of zeste homolog 2 ( EZH2) gene were detected. The expression of EZH2 in normal adult lymphocytes and Raji cells was detected by Western blot. The Raji cells were treated by UNC1999, DZNep and GSK343, followed by CCK-8 assays analyzing cell survival, flow cytometry detecting cell apoptosis and cell cycle, and Western blot detecting the expressions of EZH2 and H3K27 me3. RESULTS: The Sanger sequencing results showed that the Raji cells did not carry Y641 and A677 mutation sites of EZH2. The Western blot results showed high expressions of EZH2 in the Raji cells. The results of CCK-8 showed that UNC1999, DZNep and GSK343 inhibited cell survival, and the weakest effect was from DZNep. The flow cytometric assay showed that UNC1999, DZNep and GSK343 promoted apoptosis of the Raji cells, and the effect of UNC1999 was stronger than that of GSK343 and DZNep. The cell cycle was arrested at phase G 1/G 0 after treatment of the Raji cells with the three inhibitors, with UNC1999 triggering the most significant changes. The Western blot showed that UNC1999 and GSK343 inhibited the histone methylase activity of EZH2 and significantly reduced the expression of H3K27 me3. CONCLUSION: EZH2 inhibitors can inhibit cell survival, promote cell apoptosis and arrest cell cycle at phase G 1/G 0 of Raji cells through reducing the expression of H3K27me3. UNC1999 has a stronger effect than GSK343 and DZNep.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Histona Metiltransferases/antagonistas & inibidores , Complexo Repressor Polycomb 2 , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Indazóis/farmacologia , Linfócitos , Piridonas/farmacologia
6.
Inflamm Res ; 66(10): 881-890, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653218

RESUMO

OBJECTIVE: To explore the role and mechanism of the two-kidney one-clip (2K1C)-activated Angiotensin II (Ang II) in the development of vascular damage in adjuvant-induced arthritis (AA) rats. METHODS: 2K1C rats were established in normal and AA rats for 35 days. Hypertension, endothelial dysfunction, and vascular hypertrophy induced by 2K1C-activated Ang II in systemic inflammation rats were evaluated. The levels of Ang II and TNF-α in serum were observed by ELISA kits. Expressions of Ang II/ATR/ERK1/2 signaling pathway molecules in the aorta were tested by immunohistochemistry or western blot. The migration and capillary tube formation abilities of human umbilical vein endothelial cells (HUVECs) were tested by migration chamber and capillary tube formation assays. RESULTS: The level of Ang II in serum was significantly increased in 2K1C rats. Compared with AA rats, the high level of Ang II activated by 2K1C reduced the endothelium-dependent vasodilator responses to acetylcholine (ACh) in the thoracic aorta and exacerbated endothelial dysfunction and vascular hypertrophy. Expressions of ATR, GRK2, p-ERK1/2, and p-NF-κB were significantly increased in the aorta of AA combined with 2K1C rats. The migration and capillary tube formation abilities of HUVECs were significantly enhanced by Ang II and TNF-α co-stimulations in vitro through the ATR/ERK1/2 signaling pathway compared to those stimulated with TNF-α. CONCLUSIONS: 2K1C-activated Ang II is involved in aggravated vascular injury and endothelial dysfunction through the ATR/ERK1/2 signaling pathway in AA rats.


Assuntos
Angiotensina II/metabolismo , Artrite/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Hipertensão Renovascular/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Tubo Capilar , Movimento Celular , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Renovascular/patologia , Masculino , NF-kappa B/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 110(7): E593-601, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359713

RESUMO

The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Degeneração Retiniana/metabolismo , Análise de Variância , Animais , Fator de Transcrição E2F1/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Técnicas Histológicas , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética
8.
Nature ; 462(7275): 925-9, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016601

RESUMO

The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the 'cancer cell cycle' in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1-3 and/or its relevance beyond irradiation has not been established. To address E2f1-3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1-3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f-Sirt1-p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.


Assuntos
Apoptose , Fatores de Transcrição E2F/deficiência , Retina/citologia , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Acetilação , Animais , Divisão Celular , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Fibroblastos , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neuroglia/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Nature ; 462(7275): 930-4, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016602

RESUMO

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Assuntos
Diferenciação Celular , Fatores de Transcrição E2F/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Alelos , Animais , Apoptose , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/metabolismo
10.
Chin Med J (Engl) ; 137(9): 1054-1068, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38563217

RESUMO

BACKGROUND: Alterations in macular thickness and vascular density before clinically visible diabetic retinopathy (DR) remain inconclusive. This study aimed to determine whether retinal manifestations in abnormal glucose metabolism (AGM) patients differ from those in the healthy individuals. METHODS: PubMed, Embase, and Web of Science were searched between 2000 and 2021. The eligibility criteria were AGM patients without DR. Primary and secondary outcomes measured by optical coherence tomography (OCT) and OCT angiography (OCTA) were analyzed and expressed as standardized mean differences (SMDs) with 95% confidence intervals (CIs). A random-effects model was used in the data synthesis. The potential publication bias for the variables was evaluated using Egger's test. RESULTS: A total of 86 observational studies involving 13,773 participants and 15,416 eyes were included. OCT revealed that compared to healthy controls, the total macular thickness of AGM patients was thinner, including the thickness of fovea (-0.24, 95% CI [-0.39, -0.08]; P  = 0.002, I2  = 87.7%), all regions of parafovea (-0.32, 95% CI [-0.54, -0.11]; P  = 0.003; I2  = 71.7%) and the four quadrants of perifovea; the thickness of peripapillary retinal nerve fiber layer (pRNFL), macular retinal nerve fiber layer (mRNFL), and ganglion cell layer (GCL) also decreased. OCTA indicated that the superficial and deep vascular density decreased, the foveal avascular zone (FAZ) area enlarged, and the acircularity index (AI) reduced in AGM individuals. CONCLUSIONS: Retinal thinning and microvascular lesions have occurred before the advent of clinically detectable DR; OCT and OCTA may have the potential to detect these preclinical changes. REGISTRATION: PROSPERO; http://www.crd.york.ac.uk/prospero/ ; No. CRD42021269885.


Assuntos
Macula Lutea , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Humanos , Macula Lutea/diagnóstico por imagem , Macula Lutea/irrigação sanguínea , Macula Lutea/metabolismo , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/metabolismo , Glucose/metabolismo , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia
11.
Front Cell Infect Microbiol ; 13: 1225859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621873

RESUMO

Introduction: Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods: We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results: A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions: In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.


Assuntos
Retinopatia Diabética , Microbioma Gastrointestinal , Oftalmopatia de Graves , Degeneração Macular , Humanos , Disbiose , Inflamação , Bibliometria
12.
Heliyon ; 9(10): e21109, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37916126

RESUMO

Background: Diabetic retinopathy (DR) is a common complication in diabetic patients. DR is also a neurodegenerative disease. Patients with hyperglycemia, hyperlipidemia, and hypertension are vulnerable to retinopathy development. While the roles of blood glucose and blood pressure in the development of retinopathy have been extensively studied, the relationship between body fat and DR pathogenesis and the impact of lipid-reducing drugs on DR has just emerged as a research hotspot in DR study. We aim to visualize the contributions and cooperation of reporters, organizations, and nations, in addition to the research hotspots and trends in DR-related lipid research from 1993 to 2023, by bibliometric analysis. Methods: We extracted all publications about DR-related lipid research from 1993 to 2023 from the Web of Science Core Collection, and bibliometric features were studied using VOSviewer and the CiteSpace program. Results: 1402 documents were retrieved. The number of studies has risen consistently for three decades, from an average of 16.8/year in the 1990s to 28.8/year in the 2000s, 64.5/year in 2010s, and reached 112/year in 2020-2022, confirming they are hot research topic in the field. These reports were from 93 nations/regions, with the USA, China, Japan, Australia, and England taking the leading positions. Diabetes Research and Clinical Practice was the journal that published the most studies, and Diabetes Care was the most quoted. We identified 6979 authors, with Wong TY having the most papers and being the most commonly co-cited. The most popular keyword, according to our research, is diabetic retinopathy. Oxidative stress, diabetic macular edema (DME), lipid peroxidation, and other topics have often been investigated. Conclusion: DR-related lipid research is conducted mainly in North America, Asia, Oceania, and Europe. Much study has centered on the relationship between lipid-lowering therapy and DR pathogenesis. These studies strongly support using lipid-reducing medications (fenofibrate, statins, and omega-3 PUFAs), combined with hyperglycemia and hypertension therapy, to prevent and treat DR. However, the impact of fenofibrate or statin on retinopathy is not correlated with their action on blood lipid profiles. Thus, more randomized clinical trials with primary endpoints related to DR in T1D or T2D are merited. In addition, the lipid biomarker for DR (lipid aldehydes, ALEs, and cholesterol crystals), the action of lipid-reducing medicines on retinopathy, the mechanism of lipid-lowering medications preventing or curing DR, and ocular delivery of lipid-lowering drugs to diabetic patients are predicted as the research focus in the future in the DR-related lipid research field.

13.
Mol Aspects Med ; 94: 101221, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866106

RESUMO

Glaucoma is a common irreversible vision loss disorder because of the gradual loss of retinal ganglion cells (RGCs) and the optic nerve axons. Major risk factors include elder age and high intraocular pressure (IOP). However, high IOP is neither necessary nor sufficient to cause glaucoma. Some non-IOP signaling cascades can mediate RGC degeneration. In addition, gender, diet, obesity, depression, or anxiety also contribute to the development of glaucoma. Understanding the mechanism of glaucoma development is crucial for timely diagnosis and establishing new strategies to improve current IOP-reducing therapies. The microbiota exerts a marked influence on the human body during homeostasis and disease. Many glaucoma patients have abnormal compositions of the microbiota (dysbiosis) in multiple locations, including the ocular surface, intraocular cavity, oral cavity, stomach, and gut. Here, we discuss findings in the last ten years or more about the microbiota and metabolite changes in animal models, patients with three risk factors (aging, obesity, and depression), and glaucoma patients. Antigenic mimicry and heat stress protein (HSP)-specific T-cell infiltration in the retina may be responsible for commensal microbes contributing to glaucomatous RGC damage. LPS-TLR4 pathway may be the primary mechanism of oral and ocular surface dysbiosis affecting glaucoma. Microbe-derived metabolites may also affect glaucoma pathogenesis. Homocysteine accumulation, inflammatory factor release, and direct dissemination may link gastric H. pylori infection and anterior chamber viral infection (such as cytomegalovirus) to glaucoma. Potential therapeutic protocols targeting microbiota include antibiotics, modified diet, and stool transplant. Later investigations will uncover the underlying molecular mechanism connecting dysbiosis to glaucoma and its clinical applications in glaucoma management.


Assuntos
Glaucoma , Microbiota , Animais , Humanos , Idoso , Disbiose , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Retina/metabolismo , Obesidade/patologia , Modelos Animais de Doenças
14.
Mol Ther Nucleic Acids ; 31: 596-609, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36910709

RESUMO

Retinitis pigmentosa (RP) is a group of retinal diseases that cause the progressive death of retinal photoreceptor cells and eventually blindness. Mutations in the ß-domain of the phosphodiesterase 6 (Pde6b) gene are the most identified causes of autosomal recessive RP. Clinically, there is no effective treatment so far that can stop the progression of RP and restore the vision. Here, we report a base editing approach in which adeno-associated virus (AAV)-mediated adenine base editor (ABE) delivering to postmitotic photoreceptors was conducted to correct the Pde6b mutation in a retinal degeneration 10 (rd10) mouse model of RP. Subretinal delivery of AAV8-ABE corrected Pde6b mutation with averaging up to 20.79% efficiency at the DNA level and 54.97% efficiency at the cDNA level without bystanders, restored PDE6B expression, preserved photoreceptors, and rescued visual function. RNA-seq revealed the preservation of genes associated with phototransduction and photoreceptor survival. Our data have demonstrated that base editing is a potential gene therapy that could provide durable protection against RP.

15.
Cancer Cell ; 5(6): 539-51, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15193257

RESUMO

Retinogenesis involves expansion of pluripotent progenitors, specification of postmitotic precursors, and terminal differentiation. Rb or Rb/p107 loss causes retinoblastoma in humans or mice, respectively. One model suggests that Rb- or Rb/p107-deficient retinal precursors have infinite proliferative capacity but are death-prone and must acquire an antiapoptotic mutation. Indeed, we show that Rb/p107 loss does not affect progenitor proliferation or precursor specification, but perturbs cell cycle exit in all seven retinal precursors. However, three precursors survive Rb/p107-loss and stop proliferating following terminal differentiation. Tumors arise from precursors that escape this delayed growth arrest. Thus, retinoblastoma arises from a precursor that has extended, not infinite, proliferative capacity, and is intrinsically death-resistant, not death-prone. We suggest that additional lesions common in retinoblastoma overcome growth arrest, not apoptosis.


Assuntos
Células Amácrinas/fisiologia , Proteínas Nucleares/fisiologia , Retina/embriologia , Proteína do Retinoblastoma/fisiologia , Retinoblastoma/patologia , Células Amácrinas/metabolismo , Animais , Apoptose , Morte Celular , Diferenciação Celular , Divisão Celular , Gânglios/metabolismo , Genótipo , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Mitose , Modelos Biológicos , Mutação , Neurônios/metabolismo , Retina/metabolismo , Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like , Células-Tronco/metabolismo
16.
Front Pharmacol ; 13: 824790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273502

RESUMO

The use of steroids to treat macular edema (ME) is a research hotspot in ophthalmology. We utilized CiteSpace and VOSviewer software to evaluate the Web of Science Core Collection publications and to build visualizing maps to describe the research progress in this topic. There were 3,252 publications for three decades during 1988-2021. The number of studies was low during the first 14 years but has risen consistently in the following two decades. The average publications per year were only 4.8 during 1988-2002, which jumped to 113 per year during 2003-2012, and 227 per year during 2013-2021. These publications came from 83 countries/regions, with the United States, Germany, and Italy leading positions. Most studies were published in Investigative Ophthalmology Visual Science, and Ophthalmology was the most cited journal. We found 9,993 authors, with Bandello F having the most publications and Jonas JB being the most frequently co-cited. According to our research, the most popular keyword is triamcinolone acetonide (TA). Macular edema, diabetic macular edema (DME), retinal vein occlusion (RVO), dexamethasone (DEX), fluocinolone acetonide (FA), and some other keywords were commonly studied in this field. In conclusion, the bibliometric analysis provides a comprehensive overview of steroid hotspots and developmental tendencies in the macular edema study. While anti-VEGF therapy is the first-line treatment for DME and RVO-induced macular edema, steroids implant is a valid option for these DME patients not responding to anti-VEGF therapy and non-DME patients with macular edema. Combined therapy with anti-VEGF and steroid agents is vital for future research.

17.
Front Pharmacol ; 13: 815977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308237

RESUMO

Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.

18.
Front Neuroanat ; 16: 995369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466782

RESUMO

Glaucoma is a leading cause of blindness with progressive degeneration of retinal ganglion cells. Aging and increased intraocular pressure (IOP) are major risk factors. Lowering IOP does not always stop the disease progression. Alternative ways of protecting the optic nerve are intensively studied in glaucoma. Astrocytes are macroglia residing in the retina, optic nerve head (ONH), and visual brain, which keep neuronal homeostasis, regulate neuronal activities and are part of the immune responses to the retina and brain insults. In this brief review, we discuss the activation and heterogeneity of astrocytes in the retina, optic nerve head, and visual brain of glaucoma patients and animal models. We also discuss some recent transgenic and gene knockout studies using glaucoma mouse models to clarify the role of astrocytes in the pathogenesis of glaucoma. Astrocytes are heterogeneous and play crucial roles in the pathogenesis of glaucoma, especially in the process of neuroinflammation and mitochondrial dysfunction. In astrocytes, overexpression of Stat3 or knockdown of IκKß/p65, caspase-8, and mitochondrial uncoupling proteins (Ucp2) can reduce ganglion cell loss in glaucoma mouse models. Based on these studies, therapeutic strategies targeting the heterogeneity of reactive astrocytes by enhancing their beneficial reactivity or suppressing their detrimental reactivity are alternative options for glaucoma treatment in the future.

19.
Front Genet ; 13: 828120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401677

RESUMO

Baraitser-Winter cerebrofrontofacial syndrome (BWCFF, OMIM: 243310) is a rare autosomal-dominant developmental disorder associated with variants in the genes ACTB or ACTG1. It is characterized by brain malformations, a distinctive facial appearance, ocular coloboma, and intellectual disability. However, the phenotypes of BWCFF are heterogenous, and its molecular pathogenesis has not been fully elucidated. In the present study, we conducted detailed clinical examinations on a Chinese patient with BWCFF and found novel ocular manifestations including pseudoduplication of the optic disc and nystagmus. Targeted gene panel sequencing and Sanger sequencing identified a de novo heterozygous missense c.478A > G (p.Thr160Ala) variant in ACTB. The mRNA and protein expression of ACTB was assessed by quantitative reverse transcription PCR and Western blots. Furthermore, the functional effects of the pathogenic variant were analyzed by protein structure analysis, which indicated that the variant may affect the active site for ATP hydrolysis by the actin ATPase, resulting in abnormal filamentous actin organization in peripheral blood mononuclear cells. This discovery extends the ACTB variant spectrum, which will improve genetic counseling and diagnosis, and may contribute to understanding the pathogenic mechanisms of actin-related diseases.

20.
Commun Biol ; 5(1): 411, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505181

RESUMO

The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research.


Assuntos
Neurônios , Retina , Animais , Integrases , Camundongos , Camundongos Transgênicos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA