Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 111(1): 263-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22314780

RESUMO

Cabbage butterfly (Pieris rapae), included in the Lepidoptera genus, Pieris family, is the main pest that damages Cruciferae. In this paper, we reported a microsporidian isolate of Nosema species which was isolated from P. rapae in Zhenjiang City, Jiangsu Province, China. The mature spore of this microsporidium is long oval in shape and 3.8 ± 0.3 × 2.0 ± 0.2 µm in size. Research results showed that the novel microsporidium cannot infect the BmN cell in vitro and silkworm larvae. The organization of rRNA gene was 5'-SSU rRNA-ITS-LSU rRNA-3'. Phylogenetic trees based on SSU rRNA and LSU rRNA gene sequences were constructed by MEGA 4.0 software. The topology showed that this microsporidium was on the same second branch of Nosema clade, and had close relationships to other Nosema species. Consequently, this microsporidium was confirmed to be a member of Nosema genus, and named as Nosema sp. MPr.


Assuntos
Lepidópteros/microbiologia , Nosema/classificação , Nosema/isolamento & purificação , Animais , Linhagem Celular , China , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Nosema/citologia , Nosema/genética , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/citologia
2.
Folia Parasitol (Praha) ; 59(2): 87-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22779108

RESUMO

Microsporidia are a group of obligate intracellular unicellular eukaryotes that can parasitize a wide variety of other eukaryotes ranging from protists to invertebrates and vertebrates. In this study, we examined the microsporidium Nosema sp. isolated from the mulberry pest, Hemerophila atrilineata Butler, 1881, named herein "Nosema sp. HA". The fresh spores were long oval in shape, 3.8 +/- 0.4 microm in length and 1.9 +/- 0.3 microm in width. Analysis of tissue infection of silkworm, Bombyx mori Linnaeus, 1758, indicated that the midgut, Malpighian tubules, muscle, fat body, silk glands, hemocytes, nerve tissue and gonads of silkworm were infected with Nosema sp. HA. The complete rRNA gene sequence of this microsporidium contained 4 305 base pairs (GenBank Accession JN882299), including the large subunit rRNA (2492 bp), the internal transcribed spacer (187 bp), the small subunit rRNA (1232 bp), the intergenic spacer (279 bp) and the 5S region (115 bp). The organization of the rRNA gene is 5'-LSU-ITS-SSU-IGS-5S-3'. Phylogenetic analysis, comparison of sequence identities and the arrangement in the rRNA gene subunits suggested that this isolate is separate from other Nosema species.


Assuntos
Microsporídios/genética , Microsporídios/fisiologia , Mariposas/parasitologia , Filogenia , Animais , Interações Hospedeiro-Parasita , Microsporídios/ultraestrutura , RNA Fúngico/genética , RNA Ribossômico/genética
3.
Nanoscale ; 7(40): 16943-51, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416568

RESUMO

This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 µm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.


Assuntos
Nanopartículas/química , Estirenos/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA