Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(35): 19480-19493, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39171455

RESUMO

Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. ß-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.


Assuntos
Caseínas , Diglicerídeos , Nanopartículas , Proteínas do Soro do Leite , Nanopartículas/química , Diglicerídeos/química , Proteínas do Soro do Leite/química , Caseínas/química , Tamanho da Partícula , Termodinâmica , Lipídeos/química , Adsorção , Lipossomos
2.
Foods ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238863

RESUMO

Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.

3.
Carbohydr Polym ; 213: 304-310, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879673

RESUMO

Chitin nanocrystal (ChiNC) was fabricated based on p-toluenesulfonic acid -choline chloride deep eutectic solvent treatment. The obtained ChiNC was about 12-44 nm in width and 206-399 nm in length. The crystalline structure and the functional groups of ChiNC were maintained during the preparation process. Moreover, porcine pancreas lipase (PPL) was successfully immobilized onto the ChiNC to form the immobilized PPL (PPL@ChiNC). The resulting PPL@ChiNC has enzyme loading and activity recovery of 35.6 mg/g and 82.5%, respectively. The thermal stability, pH and temperature adaptabilities of PPL@ChiNC was improved, comparing with free PPL. The demonstrated DES treatment process was efficient for ChiNC preparation and the as-prepared ChiNC exhibited great potentials in biocatalysis and biomedical field.


Assuntos
Benzenossulfonatos/química , Quitina/química , Colina/química , Nanopartículas/química , Quitina/síntese química , Hidrólise , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA