Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431681

RESUMO

Disordered hyperuniformity (DHU) is a recently discovered novel state of many-body systems that possesses vanishing normalized infinite-wavelength density fluctuations similar to a perfect crystal and an amorphous structure like a liquid or glass. Here, we discover a hyperuniformity-preserving topological transformation in two-dimensional (2D) network structures that involves continuous introduction of Stone-Wales (SW) defects. Specifically, the static structure factor [Formula: see text] of the resulting defected networks possesses the scaling [Formula: see text] for small wave number k, where [Formula: see text] monotonically decreases as the SW defect concentration p increases, reaches [Formula: see text] at [Formula: see text], and remains almost flat beyond this p. Our findings have important implications for amorphous 2D materials since the SW defects are well known to capture the salient feature of disorder in these materials. Verified by recently synthesized single-layer amorphous graphene, our network models reveal unique electronic transport mechanisms and mechanical behaviors associated with distinct classes of disorder in 2D materials.

2.
Phys Chem Chem Phys ; 20(26): 17557-17562, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29932188

RESUMO

Disordered hyperuniform materials are a new, exotic class of amorphous matter that exhibits crystal-like behavior, in the sense that volume-fraction fluctuations are suppressed at large length scales, and yet they are isotropic and do not display diffraction Bragg peaks. These materials are endowed with novel photonic, phononic, transport and mechanical properties, which are useful for a wide range of applications. Motivated by the need to fabricate large samples of disordered hyperuniform systems at the nanoscale, we study the small-wavenumber behavior of the spectral density of binary mixtures of charged colloids in suspension. The interaction between the colloids is approximated by a repulsive hard-core Yukawa potential. We find that at dimensionless temperatures below 0.05 and dimensionless inverse screening lengths below 1.0, which are experimentally accessible, the disordered systems become effectively hyperuniform. Moreover, as the temperature and inverse screening length decrease, the level of hyperuniformity increases, as quantified by the "hyperuniformity index". Our results suggest an alternative approach to synthesize large samples of effectively disordered hyperuniform materials at the nanoscale under standard laboratory conditions. In contrast with the usual route to synthesize disordered hyperuniform materials by jamming particles, this approach is free from the burden of applying high pressure to compress the systems.

3.
Biophys J ; 111(11): 2534-2545, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926854

RESUMO

In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic tissues.


Assuntos
Células Epidérmicas , Modelos Biológicos , Animais , Anisotropia , Epiderme/embriologia , Processamento de Imagem Assistida por Computador , Camundongos , Estatística como Assunto
4.
Anal Chem ; 86(11): 5559-66, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24828232

RESUMO

Although much effort has been made for studies on aptamer-target interactions due to promising applications of aptamers in biomedical and analytical fields, measurement of the aptamer-target binding constant and binding site still remains challenging. Herein, we report a sensitive label-free chemiluminescence (CL) strategy to determine the target concentration and, more importantly, to measure the target-aptamer binding constant and binding site. This approach is suitable for multiple types of targets, including small molecules, peptides, and proteins that can enhance the CL initiated by N-(aminobutyl)-N-ethylisoluminol functionalized gold colloids, making the present method a general platform to investigate aptamer-target interactions. This approach can achieve extremely high sensitivity with nanogram samples for measuring the target-aptamer binding constant. And the measurement could be rapidly performed using a simple and low-cost CL system. It provides an effective tool for studying the binding of biologically important molecules to nucleic acids and the selection of aptamers. Besides, we have also discovered that the 14-mer aptamer fragment itself split from the ATP-binding aptamer could selectively capture ATP. The binding constant, site, and conformation between ATP and the 14-mer aptamer fragment were obtained using such a novel CL strategy and molecular dynamic simulation.


Assuntos
Aptâmeros de Nucleotídeos/análise , Medições Luminescentes/métodos , Arginina Vasopressina/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Espectrofotometria Ultravioleta , Trombina/química
5.
J Phys Condens Matter ; 36(28)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579735

RESUMO

Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials. We find that the disordered SHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the SHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e.ω∈(0,100)cm-1, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated withω∼200cm-1, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of disordered SHU chains have implications in the design and engineering of novel quantum materials for thermal and phononic applications.

6.
Phys Rev E ; 108(4-2): 045306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978628

RESUMO

Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. 142, 152 (2018)1359-645410.1016/j.actamat.2017.09.053] to anisotropic microstructures with targeted spectral densities. Our generalized construction procedure explicitly incorporates the vector-dependent spectral density function χ[over ̃]_{_{V}}(k) of arbitrary form that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of anisotropic stealthy hyperuniform microstructures with χ[over ̃]_{_{V}}(k)=0 for k∈Ω, i.e., complete suppression of scattering in an "exclusion" region Ω around the origin in Fourier space. We show how different exclusion-region shapes with various discrete symmetries, including circular-disk, elliptical-disk, square, rectangular, butterfly-shaped, and lemniscate-shaped regions of varying size, affect the resulting statistically anisotropic microstructures as a function of the phase volume fraction. The latter two cases of Ω lead to directionally hyperuniform composites, which are stealthy hyperuniform only along certain directions and are nonhyperuniform along others. We find that while the circular-disk exclusion regions give rise to isotropic hyperuniform composite microstructures, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the global symmetry of the resulting media, they can still possess structures at a local level that are nearly isotropic. Both the isotropic and anisotropic hyperuniform microstructures associated with the elliptical-disk, square, and rectangular Ω possess phase-inversion symmetry over certain range of volume fractions and a percolation threshold ϕ_{c}≈0.5. On the other hand, the directionally hyperuniform microstructures associated with the butterfly-shaped and lemniscate-shaped Ω do not possess phase-inversion symmetry and percolate along certain directions at much lower volume fractions. We also apply our general procedure to construct stealthy nonhyperuniform systems. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures via the shape, size, and symmetries of Ω, which is crucial to engineering directional optical, transport, and mechanical properties of two-phase composite media.

7.
ACS Macro Lett ; 9(12): 1745-1752, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653677

RESUMO

Molecular architecture plays a key role in the self-assembly of block copolymers, but few studies have systematically examined the influence of chain connectivity on tetrahedrally close-packed (TCP) sphere phases. Here, we report a versatile material platform comprising two blocks with substantial conformational asymmetry, A = poly(trifluoroethyl acrylate) and B = poly(dodecyl acrylate), and use it to compare the phase behavior of AB diblocks, ABA triblocks, and (AB)n radial star copolymers with n = 3 or 4. Each architecture forms TCP sphere phases at minority A block compositions (fA < 0.5), namely, σ and A15, but with differences in the location of order-order phase boundaries that are not anticipated by mean-field self-consistent field theory simulations. These results expand the palette of polymer architectures that readily self-assemble into complex TCP structures and suggest important design considerations when targeting specific phases of interest.

8.
Sci Adv ; 6(16): eaba0826, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494625

RESUMO

Disordered hyperuniformity (DHU) is a recently proposed new state of matter, which has been observed in a variety of classical and quantum many-body systems. DHU systems are characterized by vanishing infinite-wavelength normalized density fluctuations and are endowed with unique novel physical properties. Here, we report the discovery of disordered hyperuniformity in atomic-scale two-dimensional materials, i.e., amorphous silica composed of a single layer of atoms, based on spectral-density analysis of high-resolution transmission electron microscopy images. Moreover, we show via large-scale density functional theory calculations that DHU leads to almost complete closure of the electronic bandgap compared to the crystalline counterpart, making the material effectively a metal. This is in contrast to the conventional wisdom that disorder generally diminishes electronic transport and is due to the unique electron wave localization induced by the topological defects in the DHU state.

9.
Nat Commun ; 10(1): 811, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778054

RESUMO

Partitioning space into cells with certain extreme geometrical properties is a central problem in many fields of science and technology. Here we investigate the Quantizer problem, defined as the optimisation of the moment of inertia of Voronoi cells, i.e., similarly-sized 'sphere-like' polyhedra that tile space are preferred. We employ Lloyd's centroidal Voronoi diagram algorithm to solve this problem and find that it converges to disordered states associated with deep local minima. These states are universal in the sense that their structure factors are characterised by a complete independence of a wide class of initial conditions they evolved from. They moreover exhibit an anomalous suppression of long-wavelength density fluctuations and quickly become effectively hyperuniform. Our findings warrant the search for novel amorphous hyperuniform phases and cellular materials with unique physical properties.

10.
Adv Mater ; 30(19): e1702057, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28640543

RESUMO

Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology.


Assuntos
Fótons , Animais , Besouros , Cor , Modelos Teóricos , Asas de Animais
11.
PLoS One ; 9(10): e109934, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329892

RESUMO

Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a comprehensive understanding of cancer dormancy and the "switch" from a dormant to a proliferative state still needs to be strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper is to devise such a predictive computational model of dormancy with an emergent "switch" behavior. Specifically, we generalize a previous cellular automaton (CA) model for proliferative growth of solid tumor that now incorporates a variety of cell-level tumor-host interactions and different mechanisms for tumor dormancy, for example the effects of the immune system. Our new CA rules induce a natural "competition" between the tumor and tumor suppression factors in the microenvironment. This competition either results in a "stalemate" for a period of time in which the tumor either eventually wins (spontaneously emerges) or is eradicated; or it leads to a situation in which the tumor is eradicated before such a "stalemate" could ever develop. We also predict that if the number of actively dividing cells within the proliferative rim of the tumor reaches a critical, yet low level, the dormant tumor has a high probability to resume rapid growth. Our findings may shed light on the fundamental understanding of cancer dormancy.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neovascularização Patológica , Microambiente Tumoral
12.
J Phys Chem B ; 118(28): 7981-92, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24716833

RESUMO

Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation function. We find that such MRJ packings are hyperuniform with an average packing fraction of 0.770, which is considerably larger than the corresponding value for identical spheres (≈ 0.64). We conclude with some simple observations concerning what types of phase transitions might be expected in general hard-particle systems based on the particle shape and which would be good glass formers.


Assuntos
Estrutura Molecular , Cristalização , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA