Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 92(1): 76-80, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246288

RESUMO

Cowden syndrome (CS) is a difficult-to-recognize multiple hamartoma syndrome with high risks of breast, thyroid, and other cancers. Germline mutations in PTEN on 10q23 were found to cause 85% of CS when accrued from tertiary academic centers, but prospective accrual from the community over the last 12 years has revealed a 25% PTEN mutation frequency. PTEN is the phosphatase that has been implicated in a heritable cancer syndrome and subsequently in multiple sporadic cancers and developmental processes. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis. We report that 8 of 91 (8.8%) unrelated CS individuals without germline PTEN mutations carried 10 germline PIK3CA mutations (7 missense, 1 nonsense, and 2 indels) and 2 (2.2%) AKT1 mutations. These mutations result in significantly increased P-Thr308-AKT and increased cellular PIP3. Our observations suggest that PIK3CA and AKT1 are CS susceptibility genes.


Assuntos
Síndrome do Hamartoma Múltiplo/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Classe I de Fosfatidilinositol 3-Quinases , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , PTEN Fosfo-Hidrolase
2.
PLoS Pathog ; 5(3): e1000336, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19283067

RESUMO

Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrP(Sc)), a beta-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrP(C)). Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s) leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease-affected human, hamster, and mouse brains show increased total and redox-active Fe (II) iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD)-affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrP(Sc) as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrP(Sc)-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrP(Sc)-ferritin complexes induces a state of iron bio-insufficiency in prion disease-affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These data implicate redox-iron in prion disease-associated neurotoxicity, a novel observation with significant implications for prion disease pathogenesis.


Assuntos
Encéfalo/metabolismo , Homeostase/fisiologia , Ferro/metabolismo , Doenças Priônicas/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Cricetinae , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Neurônios/metabolismo , Neurônios/patologia , Doenças Priônicas/patologia , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
3.
J Virol ; 82(7): 3697-701, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18234793

RESUMO

Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Príons/isolamento & purificação , Animais , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/transmissão , Humanos , Camundongos , Camundongos Transgênicos , Medição de Risco , Baço/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA