Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 191: 111009, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32305622

RESUMO

The antibiotics-independent antimicrobial activity of graphene oxide (GO) is of great importance since antibiotic therapy is facing great challenges from drug resistance. However, the relations of GO size with its antimicrobial activity and how the size regulates the antibacterial mechanisms are still unknown. Herein, we fabricated four GO suspensions with different sizes and demonstrated the parabolic relationship between GO size and its antibacterial activity against the Gram-positive cariogenic bacterium Streptococcus mutans. More interestingly, we found out how GO size regulated the nano-bio interaction-based physical antibacterial mechanisms. Increasing the size reduced the cutting effect but enhanced the cell entrapment effect, and vice versa. In conclusion, GO size affects its edge density and lateral dimension, further regulates its physical antibacterial mechanisms in different orientations and ultimately determines its activity. These findings provide a deep understanding of GO antibacterial property and may guide the design and development of GO for clinical use.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Nanopartículas/química , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Grafite/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
2.
Pharm Nanotechnol ; 7(2): 129-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894114

RESUMO

In the past decades, nanomaterials have shown great potential in biomedical fields, especially in drug delivery, imaging and targeted therapy. Recently, the development of novel functional nanomaterials for antibacterial application has attracted much attention. Compared to the traditional direct use of antibiotics, antibacterial nanomaterials either as drug delivery systems or active agents have a higher efficacy and lower side effects. Herein, we will focus on the antibacterial applications of four commonly used nanomaterials, including metal-based nanomaterials, polymeric nanoparticles, graphene oxides or carbon-based nanomaterials and nanogels.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Composição de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Géis/química , Grafite/química , Humanos , Lipídeos/química
3.
J Control Release ; 307: 16-31, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185232

RESUMO

Graphene-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potentials in drug delivery and photodynamic/photothermal therapy due to their featured structure and physicochemical properties. In recent years, their antibacterial potentials have also been exploited. The commonly recognized antibacterial mechanisms include sharp edge-mediated cutting effect, oxidative stress and cell entrapment. This antibacterial activity is very important for human health. As we know, infection with the pathogenic bacteria, especially the drug-resistant ones, is a great threat to human lives. Thus, the development of the antibiotics-independent and drug-free antibacterial agents is of great importance and significance. Graphene-based nanomaterials are a kind of such antibacterial agents. An insight into their properties and antibacterial mechanisms is necessary before they are developed into real products. Herein, we provide a comprehensive understanding of the antibacterial application of graphene-based nanomaterials via summarizing their antibacterial activities against some typical microbial species and discussing their unique mechanisms. In addition, the side-effects and problems in using these nanomaterials are also discussed.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Grafite/administração & dosagem , Nanoestruturas/administração & dosagem , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA