Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417312

RESUMO

Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic-vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air-water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm-1 Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S2 state to the lower excited state S1 We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.

2.
Environ Sci Technol ; 57(7): 2749-2757, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36745632

RESUMO

Graphitic carbon nitride (g-C3N4) nanomaterials hold great promise in diverse applications; however, their stability in engineering systems and transformation in nature are largely underexplored. We evaluated the stability, aging, and environmental impact of g-C3N4 nanosheets under the attack of free chlorine and reactive chlorine species (RCS), a widely used oxidant/disinfectant and a class of ubiquitous radical species, respectively. g-C3N4 nanosheets were slowly oxidized by free chlorine even at a high concentration of 200-1200 mg L-1, but they decomposed rapidly when ClO· and/or Cl2•- were the key oxidants. Though Cl2•- and ClO· are considered weaker oxidants in previous studies due to their lower reduction potentials and slower reaction kinetics than ·OH and Cl·, our study highlighted that their electrophilic attack efficacy on g-C3N4 nanosheets was on par with ·OH and much higher than Cl·. A trace level of covalently bonded Cl (0.28-0.55 at%) was introduced to g-C3N4 nanosheets after free chlorine and RCS oxidation. Our study elucidates the environmental fate and transformation of g-C3N4 nanosheets, particularly under the oxidation of chlorine-containing species, and it also provides guidelines for designing reactive, robust, and safe nanomaterials for engineering applications.


Assuntos
Grafite , Nanoestruturas , Cloro , Oxidantes , Cloretos
3.
Environ Sci Technol ; 57(9): 3804-3816, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880272

RESUMO

Peroxides find broad applications for disinfecting environmental pathogens particularly in the COVID-19 pandemic; however, the extensive use of chemical disinfectants can threaten human health and ecosystems. To achieve robust and sustainable disinfection with minimal adverse impacts, we developed Fe single-atom and Fe-Fe double-atom catalysts for activating peroxymonosulfate (PMS). The Fe-Fe double-atom catalyst supported on sulfur-doped graphitic carbon nitride outperformed other catalysts for oxidation, and it activated PMS likely through a nonradical route of catalyst-mediated electron transfer. This Fe-Fe double-atom catalyst enhanced PMS disinfection kinetics for inactivating murine coronaviruses (i.e., murine hepatitis virus strain A59 (MHV-A59)) by 2.17-4.60 times when compared to PMS treatment alone in diverse environmental media including simulated saliva and freshwater. The molecular-level mechanism of MHV-A59 inactivation was also elucidated. Fe-Fe double-atom catalysis promoted the damage of not only viral proteins and genomes but also internalization, a key step of virus lifecycle in host cells, for enhancing the potency of PMS disinfection. For the first time, our study advances double-atom catalysis for environmental pathogen control and provides fundamental insights of murine coronavirus disinfection. Our work paves a new avenue of leveraging advanced materials for improving disinfection, sanitation, and hygiene practices and protecting public health.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Camundongos , Animais , Humanos , Desinfecção , Inativação de Vírus , Ecossistema , Pandemias/prevenção & controle , Peróxidos , Catálise
4.
Environ Sci Technol ; 55(18): 12414-12423, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34468124

RESUMO

Understanding the transformation of graphitic carbon nitride (g-C3N4) is essential to assess nanomaterial robustness and environmental risks. Using an integrated experimental and simulation approach, our work has demonstrated that the photoinduced hole (h+) on g-C3N4 nanosheets significantly enhances nanomaterial decomposition under •OH attack. Two g-C3N4 nanosheet samples D and M2 were synthesized, among which M2 had more pores, defects, and edges, and they were subjected to treatments with •OH alone and both •OH and h+. Both D and M2 were oxidized and released nitrate and soluble organic fragments, and M2 was more susceptible to oxidation. Particularly, h+ increased the nitrate release rate by 3.37-6.33 times even though the steady-state concentration of •OH was similar. Molecular simulations highlighted that •OH only attacked a limited number of edge-site heptazines on g-C3N4 nanosheets and resulted in peripheral etching and slow degradation, whereas h+ decreased the activation energy barrier of C-N bond breaking between heptazines, shifted the degradation pathway to bulk fragmentation, and thus led to much faster degradation. This discovery not only sheds light on the unique environmental transformation of emerging photoreactive nanomaterials but also provides guidelines for designing robust nanomaterials for engineering applications.


Assuntos
Grafite , Nanoestruturas , Compostos de Nitrogênio
5.
J Phys Chem A ; 125(17): 3589-3599, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33900754

RESUMO

Molecular symmetry is vital to the selection rule of vibrationally resolved electronic transition, particularly when the nuclear dependence of electronic wave function is explicitly treated by including Franck-Condon (FC) factor, Franck-Condon/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Our present study investigated the light absorption spectra of highly symmetric tetracene, pentacene, and hexacene molecules of point-group D2h, as well as their monobrominated derivatives with a lower Cs symmetry. It was found that the symmetry-breaking monobromination allows more vibrational normal modes and their pairs to contribute to FC/HT interference and HT coupling, respectively. Through a projection of a molecule's vibrational normal modes to its irreducible representations, a linear relationship between the FC/HT intensity to the polyacene's size was deduced alongside a quadratic dependence of the HT intensity. Both theoretically derived correlations were well justified by our numerical simulations, which also demonstrated an approximately 20% improvement on the agreement with experimental line shape if the HT theory is adopted to replace the FC approximation. Moreover, for these low-symmetry monobrominated polyacenes, the FC intensity was even weaker than its FC/HT and HT counterparts at some excitation energies, making the HT theory imperative to decipher vibronic coupling, a fundamental driving force behind numerous chemical, biological, and photophysical processes.

6.
J Phys Chem A ; 124(44): 9156-9165, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33103890

RESUMO

The line shape of an electronic spectrum conveys the coupling between electronic and vibrational degrees of freedom. In the present study, the light absorption spectra of single-crystalline pentacene were measured by polarized UV-vis microscopy at 77, 185, and 293 K. The vibronic coupling encoded in each spectrum was resolved by the Herzberg-Teller theory that considers the contributions from the Franck-Condon (FC) factor, Franck-Condo/Herzberg-Teller (FC/HT) interference, and Herzberg-Teller (HT) coupling. Specifically, excitation energies, electronic transition dipole moments, and their nuclear gradients were evaluated by the GW method to ensure numerical accuracy, while the computationally efficient density function theory was employed to determine the optimized structures and vibrational normal modes. For every pair of electronic transition and normal mode that gives rise to a strong vibronic transition intensity, we examined their spatial characteristics by projecting them onto the three crystal axes. It was found that all normal modes strongly coupled to the lowest-lying a-polarized electronic transitions oscillate along axis a, whereas none of their counterparts for the lowest-lying b-polarized electronic transitions is predominantly along axis b. This notable difference on the alignment between the electronic transition and molecular vibration could help the directional control of charge dissociation and/or spin separation. Moreover, a significant variance of the destructive FC/HT interference was discovered with increasing temperatures that can well explain the a-polarized fading tableland near 650 nm. Finally, the importance of HT coupling was corroborated by comparing its intensity with those of FC factor and FC/HT interference. Taken all together, the vibrational dependence of the electronic wave function is critical to resolve the light absorption spectra of single-crystalline pentacene and its temperature effects, facilitating the systematic design of functional optical materials based on pentacene and its derivatives.

7.
Nucleic Acids Res ; 43(10): 5065-80, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897114

RESUMO

Single base substitutions (SBSs) and insertions/deletions are critical for generating population diversity and can lead both to inherited disease and cancer. Whereas on a genome-wide scale SBSs are influenced by cellular factors, on a fine scale SBSs are influenced by the local DNA sequence-context, although the role of flanking sequence is often unclear. Herein, we used bioinformatics, molecular dynamics and hybrid quantum mechanics/molecular mechanics to analyze sequence context-dependent mutagenesis at mononucleotide repeats (A-tracts and G-tracts) in human population variation and in cancer genomes. SBSs and insertions/deletions occur predominantly at the first and last base-pairs of A-tracts, whereas they are concentrated at the second and third base-pairs in G-tracts. These positions correspond to the most flexible sites along A-tracts, and to sites where a 'hole', generated by the loss of an electron through oxidation, is most likely to be localized in G-tracts. For A-tracts, most SBSs occur in the direction of the base-pair flanking the tracts. We conclude that intrinsic features of local DNA structure, i.e. base-pair flexibility and charge transfer, render specific nucleotides along mononucleotide runs susceptible to base modification, which then yields mutations. Thus, local DNA dynamics contributes to phenotypic variation and disease in the human population.


Assuntos
DNA/química , Genoma Humano , Mutação , Sequências Repetitivas de Ácido Nucleico , Composição de Bases , Pareamento de Bases , Doença/genética , Evolução Molecular , Humanos , Mutação INDEL , Nucleossomos/química , Nucleotídeos/análise , Transcrição Gênica
8.
Environ Sci Technol ; 50(23): 12938-12948, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934277

RESUMO

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.


Assuntos
Grafite/química , Purificação da Água , Catálise , Luz , Fenóis
9.
Phys Chem Chem Phys ; 17(44): 29949-57, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26490001

RESUMO

In conjunction with the constrained density functional theory, a valence-bond representation has been employed to model the migration of anionic polaron in bulk rutile TiO2. It was found that the charge delocalization of a self-trapped electron proceeded predominately along the c crystal axis of rutile, thus exhibiting pronounced directional heterogeneity of polaron migration. As a result, the extrapolated polaron activation energies are 0.026 eV and 0.195 eV along the [001] and [111] lattice vectors, respectively. According to the Holstein theory, the difference on the activation energy makes the polaron drift over 100 times faster along the c crystal axis than on the ab crystal plane at room temperature. The notable anisotropy of the anionic polaron was also reflected through the electron paramagnetic resonance (EPR) g-matrix, whose principal component along [001] is substantially smaller than that along [110] or [11̅0]. Finally, the extent of polaron charge was probed by our calculated isotropic hyperfine coupling constants on two groups of crystallographically inequivalent (17)O atoms, which manifest distinct strengths of spin-orbit interaction with the unpaired electron.

10.
ScientificWorldJournal ; 2014: 941532, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24592200

RESUMO

This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.


Assuntos
Algoritmos , Abelhas/fisiologia , Modelos Biológicos , Dispositivo de Identificação por Radiofrequência/métodos , Comportamento Social , Animais
11.
3D Print Addit Manuf ; 10(5): 1003-1014, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886414

RESUMO

Two kinds of porous structure design strategies, ring-support (RS) and column-support (CS), are proposed for human implants. The accurate design of porosity is realized by adjusting the pore characteristics, such as strut diameter, pore diameter, and unit size. Porous specimens with porosity of 50%, 60%, 70%, and 80% were prepared by selective laser melting. The three-dimensional pore structure is basically consistent with the design characteristics, and the measured porosity is slightly lower than design value. The microstructure, microhardness, and friction and wear properties of the samples were studied. The results show that the performance along the scanning orientation is slightly better than that along the forming orientation. The compression and dynamic elastic modulus of porous specimens with different structures and porosities were analyzed. The CS porous with 60-80% porosity has suitable compressive strength and elastic modulus, which is close to that of human tissue, and effectively avoids the stress shielding phenomenon.

12.
Chem Sci ; 14(27): 7500-7511, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449074

RESUMO

Zwitterionic materials have emerged as highly effective ultralow fouling materials for many applications, however the underlying mechanism of fouling resistance remains unclear. Using ab initio molecular dynamics simulations and surface-sensitive sum frequency generation vibrational spectroscopy, we studied the hydration behaviors of zwitterionic materials, including trimethylamine-N-oxide (TMAO) and carboxybetaines of different charge-separation distances, to understand their fouling-resistant mechanism and provide a design principle for improved performance. Our study reveals that the interplay among hydrogen bonding, net charge, and dipole moment is crucial to the fouling-resistant capabilities of zwitterionic materials. Shortening of the zwitterionic spacing strengthens hydrogen bonding with water against biomolecule attachment due to the increased electrostatic and induction interactions, charge transfer, and improved structural stability. Moreover, the shortened charge separation reduces the dipole moment of zwitterionic materials with an intrinsic near-neutral net charge, decreasing their electrostatic and dipole-dipole interactions with biofoulers, and increasing their resistance to fouling. Compared to carboxybetaine compounds, TMAO has the shortest zwitterionic spacing and exhibits the strongest hydrogen bonding, the smallest net charge, and the minimum dipole moment, making it an excellent nonfouling material.

13.
JACS Au ; 3(5): 1413-1423, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234121

RESUMO

Photoinduced relaxation processes at interfaces are intimately related to many fields such as solar energy conversion, photocatalysis, and photosynthesis. Vibronic coupling plays a key role in the fundamental steps of the interface-related photoinduced relaxation processes. Vibronic coupling at interfaces is expected to be different from that in bulk due to the unique environment. However, vibronic coupling at interfaces has not been well understood due to the lack of experimental tools. We have recently developed a two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) for vibronic coupling at interfaces. In this work, we present orientational correlations in vibronic couplings of electronic and vibrational transition dipoles as well as the structural evolution of photoinduced excited states of molecules at interfaces with the 2D-EVSFG technique. We used malachite green molecules at the air/water interface as an example, to be compared with those in bulk revealed by 2D-EV. Together with polarized VSFG and ESHG experiments, polarized 2D-EVSFG spectra were used to extract relative orientations of an electronic transition dipole and vibrational transition dipoles at the interface. Combined with molecular dynamics calculations, time-dependent 2D-EVSFG data have demonstrated that structural evolutions of photoinduced excited states at the interface have different behaviors than those in bulk. Our results showed that photoexcitation leads to intramolecular charge transfer but no conical interactions in 25 ps. Restricted environment and orientational orderings of molecules at the interface are responsible for the unique features of vibronic coupling.

14.
Clin Cancer Res ; 29(16): 3172-3188, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249604

RESUMO

PURPOSE: Temozolomide resistance remains a major obstacle in the treatment of glioblastoma (GBM). The combination of temozolomide with another agent could offer an improved treatment option if it could overcome chemoresistance and prevent side effects. Here, we determined the critical drug that cause ferroptosis in GBM cells and elucidated the possible mechanism by which drug combination overcomes chemoresistance. EXPERIMENTAL DESIGN: Haloperidol/temozolomide synergism was assessed in GBM cell lines with different dopamine D2 receptor (DRD2) expression in vitro and in vivo. Inhibitors of ferroptosis, autophagy, endoplasmic reticulum (ER) stress and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) were used to validate the specific mechanisms by which haloperidol and temozolomide induce ferroptosis in GBM cells. RESULTS: In the present work, we demonstrate that the DRD2 level is increased by temozolomide in a time-dependent manner and is inversely correlated with temozolomide sensitivity in GBM. The DRD2 antagonist haloperidol, a butylbenzene antipsychotic, markedly induces ferroptosis and effectively enhances temozolomide efficacy in vivo and in vitro. Mechanistically, haloperidol suppressed the effect of temozolomide on cAMP by antagonizing DRD2 receptor activity, and the increases in cAMP/PKA triggered ER stress, which led to autophagy and ferroptosis. Furthermore, elevated autophagy mediates downregulation of FTH1 expression at the posttranslational level in an autophagy-dependent manner and ultimately leads to ferroptosis. CONCLUSIONS: Our results provide experimental evidence for repurposing haloperidol as an effective adjunct therapy to inhibit adaptive temozolomide resistance to enhance the efficacy of chemoradiotherapy in GBM, a strategy that may have broad prospects for clinical application.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Antagonistas dos Receptores de Dopamina D2/farmacologia , Linhagem Celular Tumoral , Autofagia , Estresse do Retículo Endoplasmático , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Dopamina D2/genética
15.
Rep Prog Phys ; 75(9): 096402, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22935744

RESUMO

Plasmon-molecule interactions are widely believed to involve photo-induced interferences between the localized excitation of individual electrons in molecules and the large collective excitation of conduction electrons in metal particles. The intrinsic multi-scale characteristics of plasmon-molecule interactions not only offer great opportunities for realizing precise top-down control of the optical properties of individual molecules, but also allow for accurate bottom-up manipulation of light polarization and propagation as a result of molecular excitation. However, the temporal and spatial complexity of plasmon-molecule experiments severely limits our interpretation and understanding of interactions that have important applications in dye-sensitized solar cells, single-molecule detectors, photoconductive molecular electronics, all-optical switching and photo-catalytic water splitting. This review aims to outline recent progress in experimental practice and theory for probing and exploiting the subtle coupling between discrete molecular orbitals and continuous metallic bands. For each experimental technique or theoretical model, the fundamental mechanisms and relevant applications are discussed in detail with specific examples. In addition, the experimental validation of theoretical models and the computational design of functional devices are both highlighted. Finally, a brief summary is presented together with an outlook for potential future directions of this emerging interdisciplinary research field.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Transporte de Elétrons , Luz , Nanoestruturas/efeitos da radiação , Doses de Radiação , Espalhamento de Radiação
16.
J Hazard Mater ; 436: 129251, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739770

RESUMO

Solar-driven photocatalytic generation of H2O2 over metal-free catalysts is a sustainable approach for value-added chemical production. Here, we synthesized chlorine-doped graphitic carbon nitride (Cl-doped g-C3N4) through a solvothermal method to effectively produce H2O2 with a rate of 1.19 ± 0.06 µM min-1 under visible light irradiation, which was improved by 104 times compared to pristine g-C3N4. Continuous net production of H2O2 was realized at a rate of 2.78 ± 0.10 µM min-1 up to 54 h with isopropanol as the hole scavenger, whereas H2O2 production was only sustained for ~ 6 h without scavengers. Both molecular simulations and advanced spectroscopic characterizations elucidated that the Cl dopant increased the charge transfer rate, decreased the bandgap, and reduced the activation energy of the rate-limiting step of O2 reduction, all of which favored H2O2 production. This work implemented a novel metal-free photocatalyst for sustainable H2O2 production and elucidated the mechanism for promoting H2O2 production that can guide future photoreactive nanomaterial design.

17.
Mol Pharm ; 8(2): 368-74, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21171586

RESUMO

In this work, we have combined constant-pH molecular dynamics simulations and experiments to provide a quantitative analysis of pH dependent interactions between doxorubicin hydrochloride (DOX) cancer therapeutic and faceted nanodiamond (ND) nanoparticle carriers. Our study suggests that when a mixture of faceted ND and DOX is dissolved in a solvent, the pH of this solvent plays a controlling role in the adsorption of DOX molecules on the ND. We find that the binding of DOX molecules on ND occurs only at high pH and requires at least ∼10% of ND surface area to be fully titrated for binding to occur. As such, this study reveals important mechanistic insight underlying an ND-based pH-controlled therapeutic platform.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Doxorrubicina/metabolismo , Sistemas de Liberação de Medicamentos , Nanodiamantes/química , Nanopartículas/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/química , Doxorrubicina/química , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
18.
Materials (Basel) ; 14(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066518

RESUMO

The design of flexible wearable electronic devices that can shield electromagnetic waves and work in all weather conditions remains a challenge. We present in this work a low-cost technology to prepare an ultra-thin carbon fabric-graphene (CFG) composite film with outstanding electromagnetic interference shielding effectiveness (EMI SE) and electro-photo-thermal effect. The compatibility between flexible carbon fabric skeleton and brittle pure graphene matrix empowers this CFG film with adequate flexibility. The reticular fibers and porous structures play a vital role in multiple scattering and absorption of electromagnetic waves. In the frequency range of 30-1500 MHz, the CFG film can achieve a significantly high EMI SE of about 46 dB at tiny thickness (0.182 mm) and density (1.4 g cm-3) predominantly by absorption. At low safe voltages or only in sunlight, the film can self-heat to its saturation value rapidly in 40 s. Once the electricity or light supply is stopped, it can quickly dissipate heat in tens of seconds. A combination of the EMI SE and the prominent electro-photo-thermal effect further enables such a remarkable EMI shielding film to have more potential applications for communication devices in extreme zones.

19.
J Phys Chem Lett ; 12(12): 3142-3150, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33755478

RESUMO

Vibronic coupling is believed to play an important role in siglet fission, wherein a photoexcited singlet exciton is converted into two triplet excitons. In the present study, we examine the role of vibronic coupling in singlet fission using polarized transient absorption microscopy and ab initio simulations on single-crystalline pentacene. It was found that singlet fission in pentacene is greatly facilitated by the vibrational coherence of a 35.0 cm-1 phonon, where anisotropic coherence persists extensively for a few picoseconds. This coherence-preserving phonon that drives the anisotropic singlet fission is made possible by a unique cross-axial charge-transfer intermediate state. In the same fashion, this phonon was also found to predominantly drive the quantum decohence of a correlated triplet pair to form a decoupled triplet dimer. Moreover, our transient kinetic experimental data illustrates notable directional anisotropicity of the singlet fission rate in single-crystalline pentacene.

20.
J Hazard Mater ; 418: 126294, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102366

RESUMO

We prepared a single-atom Fe catalyst supported on an oxygen-doped, nitrogen-rich carbon support (SAFe-OCN) for degrading a broad spectrum of contaminants of emerging concern (CECs) by activating peroxides such as peroxymonosulfate (PMS). In the SAFe-OCN/PMS system, most selected CECs were amenable to degradation and high-valent Fe species were present for oxidation. Moreover, SAFe-OCN showed excellent performance for contaminant degradation in complex water matrices and high stability in oxidation. Specifically, SAFe-OCN, with a catalytic center of Fe coordinated with both nitrogen and oxygen (FeNxO4-x), showed 5.13-times increased phenol degradation kinetics upon activating PMS compared to the catalyst where Fe was only coordinated with nitrogen (FeN4). Molecular simulations suggested that FeNxO4-x, compared to FeN4, was an excellent multiple-electron donor and it could potential-readily form high-valent Fe species upon oxidation. In summary, the single-atom Fe catalyst enables efficient, robust, and sustainable water and wastewater treatment, and molecular simulations highlight that the electronic nature of Fe could play a key role in determining the activity of the single-atom catalyst.


Assuntos
Ferro , Peróxidos , Carbono , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA