RESUMO
Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.
Assuntos
Bacillus subtilis , Proteínas de Bactérias , Desidrogenases de Carboidrato , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/químicaRESUMO
Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.
RESUMO
Chitin is the second most prevalent polysaccharide found in nature, following cellulose. Amino-oligosaccharides, the byproducts of chitin degradation, exhibit favorable biological properties and potential for various uses. Chitinases play a crucial function in the breakdown of chitin, and their exceptionally effective production has garnered significant interest. Here, in this study, the exochitinase PbChiA, obtained from Paenibacillus barengoltzii, was recombinantly produced and immobilized using the CotG surface protein of Bacillus subtilis WB800N. The resulting strain Bacillus subtilis WB800N pHS-CotG-Chi exhibited exceptional heat stability and efficacy across various pH levels. The chitinolytic activity of the enzyme, which had been isolated and immobilized on the spore surface, was measured to be approximately 16.06 U/mL. Including Ni2+, Zn+2, and K+, and EDTA at various concentration levels in the reaction system, has significantly enhanced the activity of the immobilized enzyme. The immobilized exochitinase demonstrated a notable rate of recycling, as the recombinant spores sustained a relative enzyme activity of more than 70% after three cycles and 62.7% after four cycles. These findings established a basis for additional investigation into the role and practical use of the immobilized bacterial exochitinase in industry.
Assuntos
Bacillus subtilis , Quitinases , Estabilidade Enzimática , Proteínas Recombinantes , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Quitina/química , Quitina/metabolismo , Quitinases/metabolismo , Quitinases/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Esporos Bacterianos/enzimologia , TemperaturaRESUMO
Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.
Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regiões Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinais Direcionadores de Proteínas/genéticaRESUMO
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: â¢The research status and mechanism of keratinase were reviewed. â¢The new direction of keratinase application and modification is discussed. â¢The existing modification methods and future modification strategies of keratinases are reviewed.
Assuntos
Endopeptidases , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Queratinas/metabolismo , Plumas/metabolismo , Concentração de Íons de HidrogênioRESUMO
OBJECTIVES: Maximizing the utility value of enzymes was achieved by exploring the effects of small molecules on the efficiency of lignin degradation by lignin peroxidase. METHODS: Using wheat straw as raw material and taking lignin degradation rate as index, it was found that laccase, glucose oxidase, malonic acid, citric acid, ZnSO4, CaCl2 could promote the lignin degradation by the lignin peroxidase from Irpex lacteus, respectively. Moreover, glucose oxidase, malonic acid and CaCl2 had obvious synergy effects on lignin degradation by the lignin peroxidase. RESULTS: The optimal conditions of lignin degradation were obtained by response surface experiment: 4% glucose oxidase, 0.74% malonic acid and 3.29% CaCl2 were added for synergistic degradation at 37 â with 50% of water content. After 72 h quickly enzymatic hydrolysis, the degradation rate of lignin was 45.84%. CONCLUSIONS: A new green and efficient method for lignin removal from straw was obtained, which provided a reference for the efficient utilization of straw and lignin peroxidase.
Assuntos
Glucose Oxidase , Lignina , Lignina/metabolismo , Cloreto de CálcioRESUMO
Objective: This study investigated the impact of the flap vascular pressurization technique on repairing large-area soft tissue defects in the limbs. Methods: This study employed a randomized controlled trial design to enroll patients with large-area skin defects in the limbs, accompanied by exposed deep tissues such as nerves, blood vessels, bones, and tendons, for various reasons between July 2020 to July 2022. The patients were randomly assigned into two groups using a random number table method. The control group (n = 30) underwent traditional anterior lateral thigh flap repair, while the experimental group (n = 30) underwent flap repair using the vascular pressurization technique. Clinical indicators, flap survival, scar formation, and satisfaction were compared between the two groups. Results: There were no significant differences in operation time, intraoperative blood loss, and length of hospital stay between the two groups (P > .05). The flap survival rate in the experimental group (90.00%, 27/30) was significantly higher than that in the control group (66.67%, 20/30) (P < .05). The Manchester Scar Scale (MSS) scores in the experimental group were significantly higher than those in the control group (P < .05). The satisfaction rate in the experimental group (93.33%, 28/30) was significantly higher than that in the control group (73.33%, 22/30) (P < .05). Conclusion: The use of the flap vascular pressurization technique for the repair of soft tissue defects in the limbs can significantly increase flap survival rate, improve scar formation, and enhance patient satisfaction, thereby demonstrating good clinical value. The flap vascular pressurization technique can be promoted as a reliable method for repairing large-area skin defects in the limbs, thereby contributing to the advancement of specialized fields.
Assuntos
Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Humanos , Cicatriz/cirurgia , Lesões dos Tecidos Moles/cirurgia , Resultado do Tratamento , Transplante de PeleRESUMO
Heterogous expression of lignin peroxidase (LiP) from Phanerochaete chrysosporium was performed in by E. coli prokaryotic expression system, and pure LiP was prepared by washing, refolding, and purification. The enzyme activity was measured by the resveratrol oxidation method. The effects of different chemicals on LiP activity were explored by adding different kinds of metal ions, acids/phenols, and surfactants. The optimal pH and temperature are 4.2 and 40 °C. The single-factor screening experiment showed that adding 1 mM Mn2+, 0.1 mM DL-lactic acid, and 2% PEG-4000 had the best promotion effect on the enzyme activity of recombinant LiP, which was 160.61%, 188.46%, and 247.83%, respectively. Further, the synergistic addition of Mn2+ and PEG-4000 achieved the best enzyme activity promotion effect of 277.51%. In addition, the addition of DL-lactic acid alone could promote LiP activity. However, the co-addition of lactic acid with Mn2+ and PEG-4000 contributed only 247.87%, which indicated that the addition of DL-lactic acid had an inhibitory effect when applied synergistically. For the first time, it was found that PEG-4000 increased LiP enzyme activity obviously and had a synergistic effect with Mn2+, serving as a reference for LiP in studies and applications pertaining to lignin breakdown.
RESUMO
Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 â for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.
Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismoRESUMO
A signal amplification system for electrochemical sensing was established by bio-nanohybrid cells (BNC) based on bacterial self-assembly and biomineralization. The BNC was constructed by partially encapsulating a Shewanella oneidensis MR-1 cell with the self-biomineralized iron sulfide nanoparticles. The iron sulfide nanoparticle encapsulated BNCs showed high transmembrane electron transfer efficiency and was explored as a superior redox cycling module. Impressively, by integrating this BNC redox cycling module into the electrochemical sensing system, the output signal was amplified over 260 times compared to that without the BNC module. Uniquely, with this BNC redox cycling system, ultrasensitive detection of riboflavin with an extremely low LOD of 0.2 nM was achieved. This work demonstrated the power of BNC in the area of biosensing and provided a new possibility for the design of a whole cell redox cycling based signal amplification system.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Oxirredução , RiboflavinaRESUMO
Bacillus coagulans is a thermophilic, facultative anaerobic, spore-forming Gram-positive bacterium, which is used as a probiotic in animal feed and human dietary supplements. In the present study, a bile-resistant thermophilic B. coagulans WT-03 strain was isolated and genetically identified. Atmospheric pressure room temperature plasma (ARTP)-induced mutation combined with adaptive laboratory evolution (ALE) was used to improve the probiotic performance of B. coagulans WT-03. After 15 s of ARTP mutation and 40 days of ALE culture, a mutant artp-aleBC15 was obtained and showed the improved tolerance to pH 2.5 and 0.3% bile salt with a survival rate of 22.4%. Further studies showed that the artp-aleBC15 mutant exhibited a relatively stable morphology, lower permeability, and higher hydrophobicity of cell membrane compared with the parent strain of B. coagulans. Additionally, artp-aleBC15 could maintain homeostasis with an intracellular pH of over 4.5 and had the altered contents of saturated fatty acids/unsaturated fatty acids in the cell membrane at pH 2.5. Our study proved that ARTP mutation combined with ALE is an efficient mutagenesis strategy to improve the probiotic performance of B. coagulans for potential industrial use.Key Points⢠A B. coagulans strain that can grow at 80 °C and 0.3% bile salt was screened.⢠ARTP combined with ALE effectively mutated B. coagulans WT-03.⢠B. coagulans artp-aleBC15 mutant showed an improved probiotic performance.⢠The mutant exhibited the lower permeability and altered fatty acid contents in the cell membrane.
Assuntos
Bacillus coagulans/fisiologia , Evolução Molecular Direcionada , Gases em Plasma/farmacologia , Probióticos , Bacillus coagulans/efeitos dos fármacos , Bacillus coagulans/genética , Bacillus coagulans/isolamento & purificação , Ácidos e Sais Biliares/metabolismo , Biofilmes/crescimento & desenvolvimento , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Ácidos Graxos/química , Interações Hidrofóbicas e Hidrofílicas , Mutagênese , Mutação , TemperaturaRESUMO
The human lipoprotein lipase (LPL) is a therapeutic target for obesity, and inhibition of LPL with the approved small molecule agent orlistat has been widely used in clinic to treat obesity-related health problems such as diabetes and cardiovascular diseases. However, a variety of missense mutations in LPL protein have been observed, which may cause resistance or sensitization for orlistat, largely limiting the clinical applications of orlistat in obesity therapy. Here, we integrated molecular dynamics simulations and enzyme inhibition to investigate orlistat response to 16 disorder-associated missense mutations in LPL catalytic domain. It was found that most mutations have a modest effect on orlistat binding, and only few can exert strong impact to the binding. Three unfavorable (Trp86Arg, Ile194Thr, and Glu242Lys) and two favorable (His136Arg and Gly188Glu) mutations were identified, which can alter the binding affinity and inhibitory activity of orlistat considerably. Structural and energetic analysis revealed that these potent mutations induce orlistat resistance and sensitization by directly influencing the intermolecular interaction between LPL and orlistat or by indirectly addressing allosteric effect on LPL structure.
Assuntos
Lactonas/farmacologia , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/química , Mutação de Sentido Incorreto/genética , Regulação Alostérica/efeitos dos fármacos , Humanos , Lactonas/química , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Orlistate , Relação Estrutura-AtividadeRESUMO
Fusion protein construction often requires peptide linkers for prolonged conformation, extended stability and enzyme activity. In this study a series of fusion between Thermotoga maritima lipase Tm1350 and Bacillus subtillis coat protein CotB, comprising of several peptide linkers, with different length, flexibility and orientations were constructed. Effects of temperature, pH and chemicals were examined, on the activity of displayed enzyme. The fusion protein with longer flexible linkers L9 [(GGGGS)4] and L7 (GGGGS-GGGGS-EAAAK-EAAAK-GGGGS-GGGGS) possess 1.29 and 1.16-fold higher activity than the original, under optimum temperature and pH respectively. Moreover, spore surface displaying Tm1350 with L3 (EAAAK-GGGGS) and L9 ((GGGGS)4) showed extended thermostably, maintaining 1.40 and 1.35-fold higher activity than the original respectively, at 80 °C after 5 h of incubation. The enzyme activity of linkers with different orientation, including L5, L6 and L7 was determined, where L7 maintained 1.05 and 1.27-fold higher activity than L5 and L6. Effect of 0.1% proteinase K, bromelain, 20% ethanol and 30% methanol was investigated. Linkers with appropriate Glycine residues (flexible) showed higher activity than Alanine residues (rigid). The activity of the displayed enzyme can be improved by maintaining orientation and flexibility of peptide linkers, to evaluate high activity and stability in industrial processes.
Assuntos
Proteínas de Bactérias/genética , Lipase/genética , Engenharia de Proteínas/métodos , Thermotoga maritima/enzimologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Lipase/metabolismo , Peptídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos , Temperatura , Thermotoga maritima/genéticaRESUMO
Lipases expressed in microbial hosts have great commercial value, but their applications are restricted by the high costs of production and harsh conditions used in industrial processes, such as high temperature and alkaline environment. In this study, an Escherichia coli-Bacillus subtilis shuttle vector (pHS-cotB-Tm1350) was constructed for the spore surface display of the lipase Tm1350 from hyperthermophilic bacterium Thermotoga maritima MSB8. Successful display of the CotB-Tm1350 fusion protein on spore surface was confirmed by Western blot analysis and activity measurements. The optimal catalytic temperature and pH of the spore surface-displayed Tm1350 were 80 °C and 9, respectively, which were higher than non-immobilized Tm1350 (70 °C and pH 7.5). Analysis of thermal and pH stability showed that spore surface-displayed Tm1350 retained 81 or 70 % of its original activity after 8 h of incubation at pH 8 or pH 9 (70 °C), which were 18 % higher than the retained activity of the non-immobilized Tm1350 under the same conditions. Meanwhile, recycling experiments showed that the recombinant spores could be used for up to three reaction cycles without a significant decrease in the catalytic rate (84 %). These results suggested that enzyme display on the surface of the B. subtilis spore could serve as an effective approach for enzyme immobilization, which has potential applications in the harsh biochemical industry.
Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Lipase/biossíntese , Thermotoga maritima , Proteínas de Bactérias/genética , Lipase/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Thermotoga maritima/enzimologia , Thermotoga maritima/genéticaRESUMO
Esterases expressed in microbial hosts are commercially valuable, but their applications are limited due to high costs of production and harsh industrial processes involved. In this study, the esterase-DSM (from Clostridium thermocellum) was expressed and successfully displayed on the spore surface, and the spore-associated esterase was confirmed by western blot analysis and activity measurements. The optimal temperature and pH of spore surface-displayed DSM was 60 and 8.5 °C, respectively. It also demonstrates a broad temperature and pH optimum in the range of 50-70, 7-9.5 °C. The spore surface-displayed esterase-DSM retained 78, 68 % of its original activity after 5 h incubation at 60 and 70 °C, respectively, which was twofold greater activity than that of the purified DSM. The recombinant spores has high activity and stability in DMSO, which was 49 % higher than the retained activity of the purified DSM in DMSO (20 % v/v), and retained 65.2 % of activity after 7 h of incubation in DMSO (20 % v/v). However, the recombinant spores could retain 77 % activity after 3 rounds of recycling. These results suggest that enzyme displayed on the surface of the Bacillus subtilis spore could serve as an effective approach for enzyme immobilization.
Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Clostridium thermocellum/enzimologia , Esterases/genética , Esterases/metabolismo , Bacillus subtilis/genética , Clostridium thermocellum/genética , Dimetil Sulfóxido , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Esterases/análise , Esterases/biossíntese , Concentração de Íons de Hidrogênio , Esporos Bacterianos/metabolismo , Temperatura , Fatores de TempoRESUMO
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Assuntos
Ração Animal , Peptídeo Hidrolases , Aves Domésticas , Animais , Ração Animal/análise , Galinhas/genética , Expressão Gênica , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genéticaRESUMO
Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E. coli-B. subtilis) shuttle expression vector pHS-cotG-lip was constructed and displayed on the surface of Bacillus subtilis spores. The analysis of enzymatic properties showed that the optimal catalytic temperature and pH of the immobilized LiP were 55 °C and 4.5, respectively. Compared with free LiP (42 °C and pH4.0), the optimal reaction temperature increased by 13 °C. After incubation at 70 °C for 1 h, its activity remained above 30%, while the free LiP completely lost its activity under the same conditions. Adding Mn2+, DL-lactic acid, and PEG-4000 increased the CotG-LiP enzyme activity to 313%, 146%, and 265%, respectively. The recyclability of spore display made the fusion protein CotG-LiP retain more than 50% enzyme activity after four cycles. The excellent recycling rate indicated that LiP displayed on the spore surface had a good application prospect in sewage treatment and other fields, and also provided a reference for the rapid and low-cost immobilized production of enzyme preparations.
RESUMO
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
RESUMO
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/metabolismo , Aminoidrolases/genética , Aminoidrolases/química , Nitrilas/metabolismo , Nitrilas/química , Agricultura , Ração Animal/análise , Biocatálise , AnimaisRESUMO
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.