Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(11): 2961-4, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22242495

RESUMO

The L-theanine was tested using confocal Raman microscopy. Obvious Raman bands were showed in the range of 250 -1 700 and 2 800-3 000 cm(-1). The Raman bands were assigned with a preliminary analysis and the characteristic vibrational modes were gained in different range of wave numbers. Eight strong Raman bands were observed in the Raman spectra at 321, 900, 938, 1 153, 1 312, 1 358, 1 454 and 1 647 cm(-1), respectively. They are the characteristic Raman bands of L-theanine. The results showed that Raman spectroscopy might be a new kind of precise, direct and fast detecting method for theanine.


Assuntos
Glutamatos/análise , Análise Espectral Raman , Vibração
2.
Zool Res ; 42(2): 250-251, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738990

RESUMO

Following the publication of our paper (Zhang et al., 2020), it has come to our attention that we erroneously listed two funding sources unrelated to this study in the "ACKNOWLEDGEMENTS" section. Hereby, we wish to update the "ACKNOWLEDGEMENTS" section as a correction.

3.
Zool Res ; 41(1): 3-19, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31840949

RESUMO

Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys ( Macacafascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3ß,5,6ß-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.


Assuntos
Androstanóis/farmacologia , Hipóxia/veterinária , Macaca fascicularis , Doenças dos Macacos/prevenção & controle , Progesterona/farmacologia , Transcriptoma , Androstanóis/administração & dosagem , Animais , Encefalopatias/prevenção & controle , Encefalopatias/veterinária , Cálcio/metabolismo , Regulação da Expressão Gênica , Hipóxia/patologia , Leucócitos/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Pressão , Progesterona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA