Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(50): e2213479119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469783

RESUMO

Rational construction of broadband and strong visible-light-absorbing (BSVLA) earth-abundant complexes is of great importance for efficient and sustainable solar energy utilization. Herein, we explore a universal Cu(I) center to couple with multiple strong visible-light-absorbing antennas to break the energy level limitations of the current noble-metal complexes, resulting in the BSVLA nonprecious complex (Cu-3). Systematic investigations demonstrate that double "ping-pong" energy-transfer processes in Cu-3 involving resonance energy transfer and Dexter mechanism enable a BSVLA between 430 and 620 nm and an antenna-localized long-lived triplet state for efficient intermolecular electron/energy transfer. Impressively, Cu-3 exhibited an outstanding performance for both energy- and electron-transfer reactions. Pseudo-first-order rate constant of photooxidation of 1,5-dihydroxynaphthalene with Cu-3 can achieve a record value of 190.8 × 10-3 min-1 among the molecular catalytic systems, over 30 times higher than that with a noble-metal photosensitizer (PS) [Ru(bpy)3]2+. These findings pave the way to develop BSVLA earth-abundant PSs for boosting photosynthesis.


Assuntos
Complexos de Coordenação , Luz , Fotossíntese , Fármacos Fotossensibilizantes , Transferência de Energia
2.
Nano Lett ; 23(23): 11145-11151, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38033205

RESUMO

Nanopore analysis relies on ensemble averaging of translocation signals obtained from numerous molecules, requiring a relatively high sample concentration and a long turnaround time from the sample to results. The recapture and subsequent re-reading of the same molecule is a promising alternative that enriches the signal information from a single molecule. Here, we describe how an asymmetric nanopore improves molecular ping-pong by promoting the recapture of the molecule in the trans reservoir. We also demonstrate that the molecular recapture could be improved by linking the target molecule to a long DNA carrier to reduce the diffusion, thereby achieving over 100 recapture events. Using this ping-pong methodology, we demonstrate its use in accurately resolving nanostructure motifs along a DNA scaffold through repeated detection. Our method offers novel insights into the control of DNA polymer dynamics within nanopore confinement and opens avenues for the development of a high-fidelity DNA detection platform.


Assuntos
Nanoporos , DNA/química , Nanotecnologia , Difusão , Polímeros
3.
Angew Chem Int Ed Engl ; 63(32): e202407448, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782721

RESUMO

Controlling the interplay between relaxation and charge/energy transfer processes in the excited states of photocatalysts is crucial for the performance of artificial photosynthesis. Metal-to-ligand charge-transfer triplet states (3MLCT*) of ruthenium(II) complexes are broadly implemented for photocatalysis, but an effective means of managing the triplets for enhanced photocatalysis has been lacking. Herein, We proposed a strategy to considerably prolong the triplet excited-state lifetime by decorating a ruthenium(II) phosphine complex (RuP-1) with pendent polyaromatic hydrocarbons (PAHs). Systematic studies demonstrate that in RuP-4 decorated with anthracene, sub-picosecond electron transfer from anthracene to 3MLCT* leads to a charge-separated state that can mediate the formation of the intra-ligand triplet state (3IL) of anthracene, resulting in an exceptionally long excited-state up to several milliseconds. This triplet management strategy enables impressive photocatalytic reduction of CO2 to CO with a turnover number (TON) of 404, an optimized quantum yield of 43 % and 100 % selectivity, which is the highest reported performance for mononuclear photocatalysts without additional photosensitizers. RuP-4 also catalyzes photochemical hydrogen generation under argon. This work opens up an avenue for regulating the excited-state charge/energy flow for the development of long-lived 3IL multi-functional mononuclear photocatalysts to boost artificial photosynthesis.

4.
Small ; 17(28): e2100711, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34133074

RESUMO

Deoxyribonucleic acid (DNA) nanostructure-based data encoding is an emerging information storage mode, offering rewritable, editable, and secure data storage. Herein, a DNA nanostructure-based storage method established on a solid-state nanopore sensing platform to save and encrypt a 2D grayscale image is proposed. DNA multi-way junctions of different sizes are attached to a double strand of DNA carriers, resulting in distinct levels of current blockades when passing through a glass nanopore with diameters around 14 nm. The resulting quaternary encoding doubles the capacity relative to a classical binary system. Through toehold-mediated strand displacement reactions, the DNA nanostructures can be precisely added to and removed from the DNA carrier. By encoding the image into 16 DNA carriers using the quaternary barcodes and reading them in one simultaneous measurement, the image is successfully saved, encrypted, and recovered. Avoiding any proteins or enzymatic reactions, the authors thus realize a pure DNA storage system on a nanopore platform with increased capacity and programmability.


Assuntos
Nanoporos , DNA , Código de Barras de DNA Taxonômico , Vidro
5.
Mater Sci Eng R Rep ; 146: 100639, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34803231

RESUMO

In recent years, the development of personal protective equipment (PPE) for health care workers (HCWs) attracted enormous attention, especially during the pandemic of COVID-19. The semi-permeable protective clothing and the prolonged working hours make the thermal comfort a critical issue for HCWs. Although there are many commercially available personal cooling products for PPE systems, they are either heavy in weight or have limited durability. Besides, most of the existing solutions cannot relieve the perspiration efficiently within the insolation gowns. To avoid heat strain and ensure a longtime thermal comfort, new strategies that provide efficient personal thermal and moisture management without compromising health protection are required. This paper reviews the emerging materials for protective gown layers and advanced technologies for personal thermal and moisture management of PPE systems. These materials and strategies are examined in detail with respect to their fundamental working principles, thermal and mechanical properties, fabrication methods as well as advantages and limitations in their prospective applications, aiming at stimulating creative thinking and multidisciplinary collaboration to improve the thermal comfort of PPEs.

6.
Nano Lett ; 20(5): 3754-3760, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32223267

RESUMO

Nanopores are powerful single-molecule tools for label-free sensing of nanoscale molecules including DNA that can be used for building designed nanostructures and performing computations. Here, DNA hard drives (DNA-HDs) are introduced based on DNA nanotechnology and nanopore sensing as a rewritable molecular memory system, allowing for storing, operating, and reading data in the changeable three-dimensional structure of DNA. Writing and erasing data are significantly improved compared to previous molecular storage systems by employing controllable attachment and removal of molecules on a long double-stranded DNA. Data reading is achieved by detecting the single molecules at the millisecond time scale using nanopores. The DNA-HD also ensures secure data storage where the data can only be read after providing the correct physical molecular keys. Our approach allows for easy-writing and easy-reading, rewritable, and secure data storage toward a promising miniature scale integration for molecular data storage and computation.


Assuntos
DNA , Armazenamento e Recuperação da Informação , Nanoporos , DNA/genética , Nanotecnologia
7.
Nano Lett ; 19(11): 7996-8001, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31577148

RESUMO

G-quadruplexes (Gqs) are guanine-rich DNA structures formed by single-stranded DNA. They are of paramount significance to gene expression regulation, but also drug targets for cancer and human viruses. Current ensemble and single-molecule methods require fluorescent labels, which can affect Gq folding kinetics. Here we introduce, a single-molecule Gq nanopore assay (smGNA) to detect Gqs and kinetics of Gq formation. We use ∼5 nm solid-state nanopores to detect various Gq structural variants attached to designed DNA carriers. Gqs can be identified by localizing their positions along designed DNA carriers, establishing smGNA as a tool for Gq mapping. In addition, smGNA allows for discrimination of (un)folded Gq structures, provides insights into single-molecule kinetics of Gq folding, and probes quadruplex-to-duplex structural transitions. smGNA can elucidate the formation of Gqs at the single-molecule level without labeling and has potential implications on the study of these structures both in single-stranded DNA and in genomic samples.


Assuntos
DNA de Cadeia Simples/química , Quadruplex G , Nanoporos/ultraestrutura , DNA/química , Cinética , Nanotecnologia , Conformação de Ácido Nucleico , Imagem Individual de Molécula
8.
Nano Lett ; 19(2): 1210-1215, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30585490

RESUMO

Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals. Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 1033 (2112) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore- and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.


Assuntos
DNA/química , Armazenamento e Recuperação da Informação/métodos , Nanoporos , Nanoestruturas/química , Nanotecnologia/métodos , Sequência de Bases , Eletricidade , Biblioteca Gênica , Nanoporos/ultraestrutura , Nanoestruturas/ultraestrutura
9.
J Sci Food Agric ; 100(4): 1718-1725, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821574

RESUMO

BACKGROUND: l-Theanine has multiple beneficial biological activities. However, there is little information about the use of l-theanine in broiler production. Therefore, this study investigated the effect of l-theanine on growth performance, intestinal development and health, and the mRNA levels of intestinal peptide and amino acid (AA) transporters of broilers. RESULTS: Body weight and average daily gain were increased by l-theanine, whereas feed to gain ratio was decreased (quadratic, P < 0.05). Notably, the relative weight of duodenum, jejunum and ileum, villus height, villus height to crypt depth ratio, the jejunal activities of glutathione peroxidase, total antioxidant capacity, catalase and total superoxide dismutase were increased linearly and/or quadratically by l-theanine (P < 0.05), whereas crypt depth, serum d-lactic acid, and jejunal protein carbonyls and malondialdehyde content were decreased linearly and/or quadratically (P < 0.05). Moreover, l-theanine enhanced the jejunal mRNA levels of occludin, claudin-1, E-cadherin, zona occludens-1, di- and tripeptide transporter, excitatory AA transporter 3, Na+ -independent cationic AA transporter 1, Na+ -independent cationic and zwitterionic AA transporter, Na+ - and Cl- -dependent neutral and cationic AA transporter, Na+ -independent cationic and Na+ -dependent neutral AA transporter (y+LAT) 1, y+LAT2, Na+ -independent branched-chain and aromatic AA transporter, and heavy chain corresponding to the b°,+ transport system (linear and/or quadratic, P < 0.05). CONCLUSIONS: l-Theanine beneficially affected the growth performance of broilers by improving intestinal development and health, and the intestinal mRNA levels of AA and peptide transporters. Therefore, l-theanine has the potential to be a promising feed additive for broilers. © 2020 Society of Chemical Industry.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Glutamatos/metabolismo , Intestinos/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Ração Animal/análise , Animais , Catalase/genética , Catalase/metabolismo , Galinhas/genética , Suplementos Nutricionais/análise , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Angew Chem Int Ed Engl ; 59(31): 12951-12957, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32333459

RESUMO

Developing strong visible-light-absorbing (SVLA) earth-abundant photosensitizers (PSs) for significantly improving the utilization of solar energy is highly desirable, yet it remains a great challenge. Herein, we adopt a through-bond energy transfer (TBET) strategy by bridging boron dipyrromethene (Bodipy) and a CuI complex with an electronically conjugated bridge, resulting in the first SVLA CuI PSs (Cu-2 and Cu-3). Cu-3 has an extremely high molar extinction coefficient of 162 260 m-1 cm-1 at 518 nm, over 62 times higher than that of traditional CuI PS (Cu-1). The photooxidation activity of Cu-3 is much greater than that of Cu-1 and noble-metal PSs (Ru(bpy)3 2+ and Ir(ppy)3 + ) for both energy- and electron-transfer reactions. Femto- and nanosecond transient absorption and theoretical investigations demonstrate that a "ping-pong" energy-transfer process in Cu-3 involving a forward singlet TBET from Bodipy to the CuI complex and a backward triplet-triplet energy transfer greatly contribute to the long-lived and Bodipy-localized triplet excited state.

11.
Langmuir ; 34(38): 11629-11636, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30122045

RESUMO

The clumping behavior of nanofibers, including nanowires and nanotubes, is a challenge to their fabrication, which may diminish their optical, electrical, and mechanical performance. However, the stability of the clumping status, especially the unstable clumping state, was rarely discussed to give a deep understanding on clumping criteria. In this study, an energy-based analysis of the nanofiber system was introduced to analyze the deformation of the fibers, providing a novel method to define the thermodynamic stability and the kinetic stability of clumping. The clumping stability design map was proposed, further the stability of the clumping status and the criteria of the five states (the stable, the thermodynamic stable, the kinetic stable, unstable, and the nonclumping state) were discussed. The theoretical criteria provide new insights into designing nanofiber arrays on surfaces to achieve desired clumping or nonclumping states.

12.
J Chem Phys ; 149(16): 163311, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384733

RESUMO

Double-stranded DNA translocates through sufficiently large nanopores either in a linear single-file fashion or in a folded hairpin conformation when captured somewhere along its length. We show that the folding state of DNA can be controlled by changing the electrolyte concentration, pH, and polyethylene glycol content of the measurement buffer. At pH 8 in 1M LiCl or 0.35M KCl, single-file translocations make up more than 90% of the total. We attribute the effect to the onset of electro-osmotic flow from the pore at low ionic strength. Our hypothesis on the critical role of flows is supported by the preferred orientation of entry of a strand that has been folded into a multi-helix structure at one end. Control over DNA folding is critical for nanopore sensing approaches that use modifications along a DNA strand and the associated secondary current drops to encode information.


Assuntos
DNA/química , Técnicas Eletroquímicas , Nanoporos , Translocação Genética/genética , Conformação de Ácido Nucleico , Osmose , Fenômenos Físicos , Cloreto de Sódio/química
13.
Nano Lett ; 17(9): 5199-5205, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829136

RESUMO

Nanopore sensors show great potential for rapid, single-molecule determination of DNA sequence information. Here, we develop an ionic current-based method for determining the positions of short sequence motifs in double-stranded DNA molecules with solid-state nanopores. Using the DNA-methyltransferase M.TaqI and a biotinylated S-adenosyl-l-methionine cofactor analogue we create covalently attached biotin labels at 5'-TCGA-3' sequence motifs. Monovalent streptavidin is then added to bind to the biotinylated sites giving rise to additional current blockade signals when the DNA passes through a conical quartz nanopore. We determine the relationship between translocation time and position along the DNA contour and find a minimum resolvable distance between two labeled sites of ∼200 bp. We then characterize a variety of DNA molecules by determining the positions of bound streptavidin and show that two short genomes can be simultaneously detected in a mixture. Our method provides a simple, generic single-molecule detection platform enabling DNA characterization in an electrical format suited for portable devices for potential diagnostic applications.


Assuntos
Mapeamento Cromossômico/métodos , DNA/análise , Nanoporos/ultraestrutura , Nanotecnologia/métodos , Sequência de Bases , Biotinilação , DNA/genética , Transporte de Íons , Estreptavidina/química
14.
J Sci Food Agric ; 98(14): 5409-5417, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29675963

RESUMO

BACKGROUND: Resveratrol has been shown to prevent high ambient temperature (HT)-induced spleen dysplasia, but the mechanisms of action are not clear. This study aims to examine the hypothesis that HT-induced spleen dysplasia may be associated with HT-induced oxidative stress and apoptosis, and resveratrol may activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, thus reducing oxidative stress and apoptosis. RESULTS: Results showed that HT caused spleen dysplasia in broilers, reflecting the lower relative weight of the spleen (P < 0.05). Compared with birds in a normal ambient temperature group, birds in the HT group exhibited higher (P < 0.05) malondialdehyde (MDA), protein carbonyl (PC), 8-hydroxydeoxyguanosine (8-OHdG) and Bcl-2 associated X protein (Bax) content, higher Bax, caspase-3 and caspase-9 mRNA levels, and caspase-3 and caspase-9 activity, and a higher Bax/B-cell lympoma/leukemia-2 (Bcl-2) ratio, but they exhibited lower (P < 0.05) glutathione (GSH) and Bcl-2 content, and lower Nrf2, glutathione peroxidase (Gpx), MnSOD, heme oxygenase 1, glutathione reductase (GR) and Bcl-2 mRNA levels, and lower total antioxidant capacity (T-AOC), T-SOD and catalase and maganese superoixide dismutase (CAT) activity, indicating HT-induced oxidative stress and apoptosis. Compared with birds in the HT group, birds in the HT + Res group exhibited higher (P < 0.05) GSH and Bcl-2 content, higher Nrf2, CAT, MnSOD, GR and Bcl-2 mRNA levels, and higher T-AOC, T-SOD and CAT activity, but lower (P < 0.05) MDA content, and Bax and caspase-3 mRNA levels, lower caspase-3 and caspase-9 activities, and Bax/Bcl-2 ratio, indicating that resveratrol activated the Nrf2 signaling pathway and decreased apoptosis in the spleen. CONCLUSION: Resveratrol was effective in ameliorating HT-induced spleen dysplasia in broilers through the activation of the Nrf2 signaling pathway, thereby decreasing apoptosis, suggesting that resveratrol may offer a potential nutritional strategy to protect against some HT-induced detriments. © 2018 Society of Chemical Industry.


Assuntos
Apoptose/efeitos dos fármacos , Temperatura Alta/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doenças das Aves Domésticas/prevenção & controle , Baço/efeitos dos fármacos , Esplenopatias/veterinária , Estilbenos/administração & dosagem , Animais , Catalase/metabolismo , Galinhas , Feminino , Glutationa/genética , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Doenças das Aves Domésticas/etiologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Resveratrol , Baço/metabolismo , Baço/patologia , Esplenopatias/etiologia , Esplenopatias/metabolismo , Esplenopatias/prevenção & controle , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
15.
Biophys J ; 112(4): 674-682, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28256227

RESUMO

Solid-state nanopores are promising tools for single-molecule detection of both DNA and proteins. In this study, we investigated the patterns of ionic current blockades as DNA translocates into or out of the geometric confinement of conically shaped pores across a wide range of salt conditions. We studied how the geometry of a nanopore affects the detected ionic current signal of a translocating DNA molecule over a wide range of salt concentration. The blockade level in the ionic current depends on the translocation direction at a high salt concentration, and at lower salt concentrations we find a nonintuitive ionic current decrease and increase within each single event for the DNA translocations exiting from confinement. We use a recently developed method for synthesizing DNA molecules with multiple position markers, which provides further experimental characterization by matching the position of the DNA in the pore with the observed ionic current signal. Finally, we employ finite element calculations to explain the shapes of the signals observed at all salt concentrations and show that the unexpected current decrease and increase are due to the competing effects of ion concentration polarization and geometric exclusion of ions. Our analysis shows that over a wide range of geometries, voltages, and salt concentrations, we are able to understand the ionic current signals of DNA in asymmetric nanopores, enabling signal optimization in molecular sensing applications.


Assuntos
DNA/metabolismo , Movimento , Nanoporos , Nanotecnologia , Sais/farmacologia , Relação Dose-Resposta a Droga , Análise de Elementos Finitos , Vidro/química
16.
Nat Biomed Eng ; 8(3): 325-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37550424

RESUMO

Single-molecule quantification of the strength and sequence specificity of interactions between proteins and nucleic acids would facilitate the probing of protein-DNA binding. Here we show that binding events between the catalytically inactive Cas9 ribonucleoprotein and any pre-defined short sequence of double-stranded DNA can be identified by sensing changes in ionic current as suitably designed barcoded linear DNA nanostructures with Cas9-binding double-stranded DNA overhangs translocate through solid-state nanopores. We designed barcoded DNA nanostructures to study the relationships between DNA sequence and the DNA-binding specificity, DNA-binding efficiency and DNA-mismatch tolerance of Cas9 at the single-nucleotide level. Nanopore-based sensing of DNA-barcoded nanostructures may help to improve the design of efficient and specific ribonucleoproteins for biomedical applications, and could be developed into sensitive protein-sensing assays.


Assuntos
Nanoporos , Sistemas CRISPR-Cas , DNA/química , Nanotecnologia , Proteínas
17.
ACS Nano ; 18(34): 23243-23252, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39153186

RESUMO

Nanopores have emerged as highly sensitive biosensors operating at the single-molecule level. However, the majority of nanopore experiments still rely on averaging signals from multiple molecules, introducing systematic errors. To overcome this limitation and obtain accurate information from a single molecule, the molecular ping-pong methodology provides a precise approach involving repeated captures of a single molecule. In this study, we have enhanced the molecular ping-pong technique by incorporating a customized electronic system and control algorithm, resulting in a recapture number exceeding 10,000. During the ping-pong process, we observed a significant reduction in the variance of translocation characteristics, providing fresh insights into single-molecule translocation dynamics. An inhomogeneous translocation velocity of folded DNA has been revealed, illustrating a strong interaction between the molecule and the solid-state nanopore. The results not only promise heightened experimental efficiency with reduced sample volume but also increase the precision in statistical analysis of translocation events, marking a significant stride toward authentic single-molecule nanopore sensing.


Assuntos
DNA , Nanoporos , DNA/química , Algoritmos , Nanotecnologia , Técnicas Biossensoriais
18.
Gels ; 10(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39195024

RESUMO

Bacterial infection treatment for chronic wounds has posed a major medical threat and challenge. Bacteria at the wounded sites can compete with the immune system and subsequently invade live tissues, leading to more severe tissue damage. Therefore, there is an urgent demand for wound dressings with antibacterial and anti-inflammatory properties. Considering the concept of moist healing, hydrogels with a three-dimensional (3D) network structure are widely used as wound dressings due to their excellent hydrophilicity, water retention properties, and biocompatibility. Developing antibacterial hydrogels for the treatment of infected wounds has been receiving extensive attention recently. This article categorizes antibacterial hydrogels according to their materials and antibacterial modes, and introduces the recent findings and progress regarding their status. More importantly, with the development of emerging technologies, new therapies are utilized to prepare antibacterial hydrogels such as nanoenzymes, photothermal therapy (PTT), photodynamic therapy (PDT), metal-organic frameworks (MOFs), and other external stimuli-responsive methods. Therefore, this review also examines their progress, challenges, and future trends as wound dressings. In the following studies, there will still be a focus on antibacterial hydrogels that have a high performance, multi-functions, and intelligence, especially biocompatibility, a high and long-lasting antibacterial property, responsiveness, and on-demand therapeutic ability.

19.
J Pharm Biomed Anal ; 251: 116401, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151292

RESUMO

The aim of this study was to develop and fully validate a sensitive and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantification of pristinamycin ⅠA (PⅠA) and pristinamycin ⅡA (PⅡA) in plasma of beagle dogs after oral administration of pristinamycin tablets. PⅠA, PⅡA and quinupristin (internal standard, IS) were separated on an Agilent Eclipse Plus C18 column (2.1 mm × 100 mm, 3.5 µm particle size) by using gradient elution consisting of methanol and water (0.1 % formic acid) at a flow rate of 0.4 mL/min in 4.0 min. Multiple reaction monitoring (MRM) mode was performed to quantify data under monitoring precursor-product ion transitions of m/z 867.6→134.1, 548.4→287.1 and 1022.7→133.9 for PⅠA, PⅡA and IS at positive ion mode, respectively. The method was developed at linearity ranging from 1.0 to 1000 ng/mL for all analytes.The accuracy of PⅠA and PⅡA was observed to range between -10.6 % and 7.1 %, while the precision was found to be within 8.9 %. No significant matrix effect was observed. PⅠA and PⅡA demonstrated stability during sample storage, preparation and analytic procedures. Furthermore, this method was successfully applied in the investigation of the pharmacokinetic profile of PⅠA and PⅡA in beagle dogs after oral administration of pristinamycin tablets (75 mg for PⅠA and 175 mg for PⅡA). The biological half-life (t1/2) was determined to be 1.75 ± 0.07 h and 1.44 ± 0.31 h for PⅠA and PⅡA, respectively. The areas under curves (AUC0-t) of PⅠA and PⅡA were 80.7 ± 24.6 and 230 ± 94.8 µg/L·h, respectively.


Assuntos
Pristinamicina , Espectrometria de Massas em Tandem , Animais , Cães , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral , Pristinamicina/farmacocinética , Pristinamicina/sangue , Reprodutibilidade dos Testes , Masculino , Comprimidos
20.
Natl Sci Rev ; 11(6): nwae130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741716

RESUMO

The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA