Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 242: 117798, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040175

RESUMO

Ramie (Boehmeria nivea L.) is an ideal crop for cadmium (Cd) pollution remediation due to its advantages of both remediating and utilizing, however, it is mainly carried out in dry land, whose restoration effect is relatively slow. Previously, we found that the ramie plants cultivated by hydroponics has several tens of times higher Cd absorption capacity than that planted in soil. However, the issue of how to use hydroponic ramie to remediate Cd contaminated paddy fields needs to be addressed. In this study, we innovatively developed the ramie floating island technology and studied its remediation model on simulated Cd contaminated paddy fields. Different ramie varieties were used to compare the remediation effects, and the results showed that there were differences in adaptability among different varieties on floating islands and the remediation ability of the tested ramie varieties was Z2 > Z1 > Z3. Different harvested times were set to analyze the effects of harvested model on remediation, and it was suggested that multiple harvests can be carried out according to the plant growth status of ramie floating island after 30 days of remediation to achieve better remediation effects. Low water level height (5 cm) of paddy field was beneficial for the accumulation of Cd in the roots, but considering the adaptability of various ramie varieties and the effect of long-term restoration, it was recommended that the water level height of 20 cm for the cultivation of ramie floating island was more suitable. Moreover, we found that low concentration of citric acid (≤2 g L-1) or polyaspartic acid (≤3 g L-1) can improve the remediation effects for ramie floating island. Our study opens up a novel approach for ramie to remediate heavy metal pollution and provides a technical reference for water body Cd remediation by plants.


Assuntos
Boehmeria , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Cádmio , Água
2.
Genomics ; 114(2): 110275, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108591

RESUMO

MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no study is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYBs) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYBs under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8, AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of the AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 for example, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analyses suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.


Assuntos
Apocynum , Arabidopsis , Apocynum/genética , Apocynum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902009

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.


Assuntos
Apocynum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Trealose , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Filogenia , Família Multigênica
4.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894962

RESUMO

The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.


Assuntos
Boehmeria , Boehmeria/genética , Boehmeria/metabolismo , Transcriptoma , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Environ Monit Assess ; 195(8): 1009, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37522949

RESUMO

Remediation of cadmium (Cd) pollution is one of the priorities of global environmental governance and accurate detection of Cd content is a key link in remediation of Cd pollution. This study aimed to compare three methods (inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and graphite furnace-atomic absorption spectrometry (GF-AAS)) for the determination of Cd with different tissues of various ramie varieties, and distinguish the advantage and disadvantage of each method. In total, 162 samples of ramie (Boehmeria nivea L.), which is an ideal plant for heavy metal remediation, were detected and the results showed that the three methods were all suitable for the de-termination of Cd content in ramie. ICP-OES and ICP-MS were simpler, faster, and more sensitive than GF-AAS. ICP-MS could be recommended for the determination of samples with various concentrations of Cd. ICP-OES could be used for measurement of samples with > 100 mg/kg Cd content, while GF-AAS was suitable for the detection of samples with very high (> 550 mg/kg) or very low (< 10 mg/kg) Cd content. Overall, considering the accuracy, stability, and the cost of measurement, ICP-MS was the most suitable method for determination of Cd content. This study provides significant reference information for the research in the field of Cd pollution remediation.


Assuntos
Boehmeria , Grafite , Cádmio , Conservação dos Recursos Naturais , Política Ambiental , Monitoramento Ambiental
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499437

RESUMO

AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield.


Assuntos
Boehmeria , Boehmeria/genética , Boehmeria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Filogenia , Melhoramento Vegetal , Estresse Fisiológico/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas
7.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364168

RESUMO

In the current study, the total content from two Apocynum species leaves (Apocynum venetum and Apocynum hendersonii) collected from the Ili River Valley Region were extracted, and their bioactivities were investigated. The results showed a significant variation in the total flavonoid contents in the leaf samples collected at different periods (June, July, August, and September), with the highest content in August (60.11 ± 0.38 mg RE/g DW for A. venetum and 56.56 ± 0.24 mg RE/g DW for A. hendersonii), and the lowest in June (22.36 ± 0.05 mg RE/g DW for A. venetum and 20.79 ± 0.02 mg RE/g DW for A. hendersonii). The total flavonoid content was comparably higher in A. venetum than in A. hendersonii. Leaves extracts from the two species demonstrated strong bioactivity, which positively correlated with the total flavonoid contents. The anti-oxidative activity of A. venetum was higher than that of A. hendersonii in tandem with its higher flavonoid contents; the antibacterial activity, however, was conversely opposite. Furthermore, a total of 83 flavonoid metabolites were identified in the two species based on UPLC-ESI-MS/MS, out of which 24 metabolites were differentially accumulated. The variability in these metabolites might be the reason for the different bioactivities displayed by the two species. The present study provides insight into the optimal harvest time for Apocynum species planted in the major distribution area of the Ili River Valley and the specific utilization of A. venetum and A. hendersonii.


Assuntos
Apocynum , Flavonoides/farmacologia , Flavonoides/análise , Espectrometria de Massas em Tandem , Rios , Folhas de Planta/química
8.
BMC Genomics ; 22(1): 684, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548018

RESUMO

BACKGROUND: The bast fiber crop ramie can be used as high-quality forage resources, especially in tropical or subtropical region where there is lack of high-quality protein feed. Hongxuan No.1 (HX_1) is a unique ramie variety with a light reddish brown leaf color, which is obviously different from elite cultivar, Zhongzhu No.1 (ZZ_1, green leaf). While, the regulatory mechanism of color difference or secondary metaboliates synthesis between these two varieties have not been studied. RESULTS: In this study, phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 were conducted to elucidate the mechanism of leaf color formation. Chromaticity value and pigment content measuring showed that anthocyanin was the main metabolites imparting the different leaf color phenotype between the two varieties. Based on LC/MS, at least 14 anthocyanins were identified in leaves of HX_1 and ZZ_1, and the HX_1 showed the higher relative content of malvidin-, pelargonidin-,and cyanidin-based anthocyanins. Transcriptome and metabolome co-analysis revealed that the up-regulated expression of flavonoids synthesis gene was positively correlated with total anthocyanins accumulation in ramie leaf, and the differentfially expression of "blue gene" (F3'5'H) and the "red gene" (F3'H) in leaves bring out HX_1 metabolic flow more input into the cyanidin branch. Furthermore, the enrichment of glycosylated modification pathway (UGT and AT) and the expression of flavonoid 3-O-glucosyl transferase (UFGT), anthocyanidin reductase (ANR), in leaves were significantly influenced the diversity of anthocyanins between HX_1 and ZZ_1. CONCLUSIONS: Phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 indicated that the expression levels of genes related to anthocyanin metabolism contribute to the color formation of ramie variety. Anthocyanins are important plant secandary metabilates with many physiological functions, the results of this study will deepened our understanding of ramie leaf color formation, and provided basis for molecular breeding of functional forage ramie.


Assuntos
Boehmeria , Antocianinas/metabolismo , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
9.
BMC Plant Biol ; 18(1): 369, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577815

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation. RESULTS: Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie. CONCLUSIONS: This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.


Assuntos
Boehmeria/genética , Cádmio/toxicidade , Genoma de Planta/genética , MicroRNAs/genética , Boehmeria/metabolismo , Boehmeria/fisiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , MicroRNAs/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Análise de Sequência de DNA , Estresse Fisiológico
10.
BMC Plant Biol ; 18(1): 345, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541445

RESUMO

BACKGROUND: Ramie (Boehmeria nivea L.) is one of the most important natural fiber crops and an important forage grass in south China. Ramet number, which is a quantitative trait controlled by multigenes, is one of the most important agronomic traits in plants because the ramet number per plant is a key component of grain yield and biomass. However, the genetic variation and genetic architecture of ramie ramet number are rarely known. RESULTS: A genome-wide association study was performed using a panel of 112 core germplasms and 108,888 single nucleotide polymorphisms (SNPs) detected using specific-locus amplified fragment sequencing technology. Trait-SNP association analysis detected 44 significant SNPs that were associated with ramet number at P < 0.01. The favorable SNP Marker20170-64 emerged at least twice in the three detected stages and was validated to be associated with the ramie ramet number using genomic DNA polymerase chain reaction with an F1 hybrid progeny population. Comparative genome analysis predicted nine candidate genes for ramet number based on Marker20170-64. Real-time quantitative polymerase chain reaction analysis indicated that six of the genes were specific to upregulation in the ramie variety with high ramet number. These results suggest that these genes could be considered as ramet number-associated candidates in ramie. CONCLUSIONS: The identified loci or genes may be promising targets for genetic engineering and selection for modulating the ramet number in ramie. Our work improves understanding of the genetics of ramet number in ramie core germplasms and provides tools for marker-assisted selection for improvement of agricultural traits.


Assuntos
Boehmeria/genética , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Boehmeria/fisiologia , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Característica Quantitativa Herdável
11.
Int J Phytoremediation ; 20(6): 545-551, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29688056

RESUMO

By using a hydroponic culture system, the terrestrial fiber crop ramie can growth optimally in aquatic environment and enhance exponentially quantities of high quality seedlings for subsequent field cultivation. In this study, the survival rate of ramie seedling was more than 97% when cultured using the novel hydroponic method. Further physiological analysis of the hydroponic ramie to different concentration of livestock wastewater demonstrated that all of these ramies can survival in livestock wastewater, but the 4 times diluted livestock wastewater (total N: 100.9 mg L-1, total P: 2.69 mg L-1) was more appropriate for ramie growth. The nutrients N and P in livestock wastewater were significantly decreased by the growth of ramie, and the removal efficiency of total N and total P in the 4 times diluted livestock wastewater achieved 78.1% and 43.1% respectively within 5 weeks. In conclusion, our studies highlight that the combination of ramie and the hydroponic technology resulted to be effective in the phytoremediation of livestock wastewater.


Assuntos
Boehmeria , Águas Residuárias/análise , Animais , Biodegradação Ambiental , Hidroponia , Gado , Nitrogênio/análise , Fósforo/análise
12.
Int J Biol Macromol ; 263(Pt 2): 130104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350586

RESUMO

Ramie is a valuable crop that produces high-quality fibers and holds promise in ecological management and potential therapeutic properties. The damage of submergence during the fertile period seriously affects the growth of ramie. This study used transcriptomics and UPLC-QTOF/MS-based lipidomics analysis to reveal the lipids remodeling and stress adaptation mechanism in ramie response to submergence. The results of subcellular distribution showed that lipids in ramie leaf cells mostly aggregate in the inter-chloroplast cytoplasm to form lipid droplets under submergence stress. High-performance thin-layer chromatography (HPTLC) and lipidomics analysis showed that the composition and content of lipids in ramie leaves significantly changed under submergence stress, and the content of fatty acids (FAs) gradually accumulated with the extension of the submergence treatment time. Further analysis revealed that the content of 18:3 (n3) Coenzyme A (C18:3-CoA) increased significantly with the prolongation of submergence stress, and the exogenous addition of C18:3-CoA activated the expression of hypoxia-responsive marker genes such as BnADH1, BnPCO2, BnADH1, and BnPDC1. These results suggest that the ramie lipid metabolism pathways were significantly affected under submergence, and the C18:3-CoA may act directly or indirectly on the hypoxia-responsive genes to activate their transcriptional activities, thereby enhancing the tolerance of ramie to submergence stress.


Assuntos
Boehmeria , Ácidos Graxos , Ácidos Graxos/metabolismo , Boehmeria/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Hipóxia/genética
13.
Front Genet ; 14: 1080909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896232

RESUMO

Gene family, especially MYB as one of the largest transcription factor family in plants, the study of its subfunctional characteristics is a key step in the study of plant gene function. The sequencing of ramie genome provides a good opportunity to study the organization and evolutionary characters of the ramie MYB gene at the whole genome level. In this study, a total of 105 BnGR2R3-MYB genes were identified from ramie genome and subsequently grouped into 35 subfamilies according to phylogeny divergence and sequences similarity. Chromosomal localization, gene structure, synteny analysis, gene duplication, promoter analysis, molecular characteristics and subcellular localization were accomplished using several bioinformatics tools. Collinearity analysis showed that the segmental and tandem duplication events is the dominant form of the gene family expansion, and duplications prominent in distal telomeric regions. Highest syntenic relationship was obtained between BnGR2R3-MYB genes and that of Apocynum venetum (88). Furthermore, transcriptomic data and phylogenetic analysis revealed that BnGMYB60, BnGMYB79/80 and BnGMYB70 might inhibit the biosynthesis of anthocyanins, and UPLC-QTOF-MS data further supported the results. qPCR and phylogenetic analysis revealed that the six genes (BnGMYB9, BnGMYB10, BnGMYB12, BnGMYB28, BnGMYB41, and BnGMYB78) were cadmium stress responsive genes. Especially, the expression of BnGMYB10/12/41 in roots, stems and leaves all increased more than 10-fold after cadmium stress, and in addition they may interact with key genes regulating flavonoid biosynthesis. Thus, a potential link between cadmium stress response and flavonoid synthesis was identified through protein interaction network analysis. The study thus provided significant information into MYB regulatory genes in ramie and may serve as a foundation for genetic enhancement and increased productivity.

14.
Chemosphere ; 337: 139298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391082

RESUMO

Ramie is an ideal crop for remediation of cadmium (Cd) contaminated soil. However, there is a lack of rapid and effective evaluation system for Cd tolerance of ramie germplasms, and also a lack of systematic and in-depth research under Cd contaminated field conditions. This study innovatively developed a rapid screening system of "hydroponics-pot planting", and 196 core germplasms were used to quickly and effectively identify their Cd tolerance and Cd enrichment capacity. Then, two excellent varieties were selected to carry out a 4 years of field experiment under Cd contaminated field to study the remediation model, evaluation of reuse after repair and the mechanism of microbial regulation. The results showed that ramie adopted the cycle mode of "Absorption-activating soil Cd-Migration-Absorption" to remediate on Cd contaminated field, and the application of ramie for remediation had good ecological and economic benefits. Ten dominant genera such as Pseudonocardiales, as well as the key functional genes (mdtC, mdtB, mdtB/yegN, actR, rpoS, and ABA transporter gene) in rhizosphere soil, were identified to participate in activating Cd in rhizosphere soil and promoting ramie to enrich Cd. This study provides a technical route and practical production experience for the research field of phytoremediation of heavy metal pollution.


Assuntos
Boehmeria , Metais Pesados , Poluentes do Solo , Cádmio , Biodegradação Ambiental , Solo
15.
Biology (Basel) ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132301

RESUMO

A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.

16.
iScience ; 26(5): 106772, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250304

RESUMO

Apocynum species have great application prospects in textile and phytoremediation of saline soil, are rich in flavonoids, and possess medicinal significance. Here, we report the draft genomes of Apocynum venetum and Apocynum hendersonii, and elucidate their evolutionary relationship. The high synteny and collinearity between the two suggested that they have experienced the same WGD event. Comparative analysis revealed that flavone 3-hydroxylase (ApF3H) and differentially evolved flavonoid 3-O-glucosyl transferase (ApUFGT) genes are critical for determining natural variation in flavonoid biosynthesis between the species. Overexpression of ApF3H-1 enhanced the total flavonoid content and promoted the antioxidant capacity of transformed plants compared to the wild-type. ApUFGT5 and 6 explained the diversification of flavonoids or their derivatives. These data provide biochemical insight and knowledge on the genetic regulation of flavonoid biosynthesis, supporting the adoption of these genes in breeding programs aimed at the multipurpose utilization of the plants.

17.
Front Plant Sci ; 13: 812988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432436

RESUMO

A total of 60 WRKY family genes of ramie were identified in the ramie. The genes were unevenly distributed across 14 chromosomes in the specie and highly concentrated (72%) in the distal telomeric region. Phylogenetic analysis placed these genes into seven distinct subfamilies groups: I, II (a, b, c, d, e), and III, with group IIc containing only the variant of heptapetide sequence (WRKYGKK). Segmental duplication events (41.7%) was found to be the main driver of BnGWRKY evolution. Thirty eight from among the genes showed collinear relationships with WRKY genes from Arabidopsis thaliana, Cannabis sativa, Oryza sativa, and Zea mays. The number and density of stress and hormone responsives cis-acting elements were comparably higher than other elements, with abundant ARE and rare LTR cis-acting elements indicating the long-standing adaptability of ramie to its natural environment. GO and KEGG enrichment analysis of the WRKY target genes revealed their involvement in response to stimuli, immune system processes, transporter protein activity and antioxidant activity. Expression analysis show that most WRKYs were activated by the cadmium stress, more especially the BnGWRKY2, BnGWRKY15, BnGWRKY20, BnGWRKY50 and BnGWRKY58. Combining transcriptome, orthologous gene relationships and qPCR result, we established the possible involvement of BnGWRKY50 and BnGWRKY58 in crosstalk mechanism between secondary cell wall thickening and Cd2+ stress. This provided information into the role of BnGWRKY proteins in ramie secondary wall development and cadmium stress response to, and could serve as basis for improvement of the ramie.

18.
Plants (Basel) ; 11(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956439

RESUMO

Apocynum hendersonii is a traditional medicinal plant used primarily as tea. It has a potential health benefit from its rich bioactive substances. This study investigated the reactivity of solvents of different polarities (ethanol, ethyl acetate, n-hexane, methanol, and water) extracts of the A. hendersonii leaf. The phytochemical composition of the extracts was evaluated using a Fourier Transform Infrared spectrophotometer (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS), UHPLC-MS, and Higher Performance Liquid Chromatography (HPLC). The result revealed the presence of medicinally important bioactive constituents, including phenols, flavonoids, and polysaccharides. Methanol extracts exhibited the highest flavonoid contents (20.11 ± 0.85 mg QE/g DW) and the second-highest in terms of phenolic (9.25 ± 0.03 mg GAE/g DW) and polysaccharide (119.66 ± 2.65 mg GE/g DW). It also had the highest antioxidant capacity with 60.30 ± 0.52% and 4.60 ± 0.02 µmol Fe2+ per g DW based on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and ferric reducing antioxidant power (FRAP), respectively. Ethanol extract displayed the maximum antibacterial action against Gram-negative and Gram-positive bacteria and the highest inhibition activity against the enzymes tyrosinase and acetylcholinesterase, followed by methanol extract. The principal component analysis revealed a positive correlation between the constituents, bioactivities, and extracts. The overall result showed A. hendersonii as a rich natural source of antimicrobial and antioxidant bioactive compounds and may be used for future applications in pharmaceuticals and food industries.

19.
Sci Rep ; 11(1): 22045, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764306

RESUMO

Abscisic acid (ABA) is known as an important hormone regulating plant stress resistance, such as salt, drought and heavy metal resistance. However, the relationship between ABA and cadmium (Cd) enrichment in ramie (Boehmeria nivea L.) is still unclear to date. This study aimed to reveal the effect of ABA on Cd enrichment in ramie, and we received the following results: (1) Under Cd treatment, the Cd uptake of ramie increased with the increase of Cd concentration, but the chlorophyll content decreased. Under Cd treatment, the ABA content was highest in roots of ramie, followed by that in old leaves, and lowest in new leaves. Long-time treatment of high Cd concentration reduced the ability of endogenous ABA biosynthesis. (2) Spraying ABA on ramie plants (SORP) and adding ABA directly to the culture solution (ADCS) with low concentration can promote the growth of ramie and increase the amount of Cd uptake, and the effect of SORP is better. (3) The molecular reason for the decrease of chlorophyll content due to Cd stress, may be resulted from the down-regulated expression of the chlorophyll synthesis genes (BnPAO and BnNYC1) and the up-regulated expression of the chlorophyll degradation genes (BnCHLH, BnCHLG, BnHAP3A and BnPPR1). The elevated ABA content in ramie plants may due to the up-regulated expression of the ABA synthesis related genes (BnABA1, BnNCED3, and BnNCED5) and the genes (BnABCG40, BnNFXL2, BnPYL9, BnGCR2, BnGTG1, BnBGLU1, BnUTG1, BnVHAG1 and BnABI5) that encoding ABA transport and response proteins, which was consistent with the enhance the Cd uptake in ramie. Our study revealed the relationship between ABA and Cd uptake in ramie, which provided a reference for improving the enrichment of Cd in ramie.


Assuntos
Ácido Abscísico/metabolismo , Boehmeria/fisiologia , Cádmio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Boehmeria/genética , Regulação da Expressão Gênica de Plantas , Poluentes do Solo/metabolismo , Estresse Fisiológico
20.
Plants (Basel) ; 10(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467608

RESUMO

The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA