Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1054-C1066, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344798

RESUMO

To understand the role of myo-inositol oxygenase (miox) in the osmotic regulation of Nile tilapia, its expression was analyzed in various tissues. The results showed that the expression of miox gene was highest in the kidney, followed by the liver, and was significantly upregulated in the kidney and liver under 1 h hyperosmotic stress. The relative luminescence efficiency of the miox gene transcription starting site (-4,617 to +312 bp) under hyperosmotic stress was measured. Two fragments (-1,640/-1,619 and -620/-599) could induce the luminescence activity. Moreover, the -1,640/-1,619 and -620/-599 responded to hyperosmotic stress and high-glucose stimulation by base mutation, suggesting that osmotic and carbohydrate response elements may exist in this region. Finally, the salinity tolerance of Nile tilapia was significantly reduced after the knocking down of miox gene. The accumulation of myo-inositol was affected, and the expression of enzymes in glucose metabolism was significantly reduced after the miox gene was knocked down. Furthermore, hyperosmotic stress can cause oxidative stress, and MIOX may help maintain the cell redox balance under hyperosmotic stress. In summary, MIOX is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.NEW & NOTEWORTHY Myo-inositol oxygenase (MIOX) is the rate-limiting enzyme that catalyzes the first step of MI metabolism and determines MI content in aquatic animals. To understand the role of miox in the osmotic regulation of Nile tilapia, we analyzed its expression in different tissues and its function under hyperosmotic stress. This study showed that miox is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Antioxidantes , Inositol/metabolismo , Glucose/metabolismo
2.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660921

RESUMO

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

3.
Fish Shellfish Immunol ; 147: 109455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369072

RESUMO

As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.


Assuntos
Antioxidantes , Braquiúros , Animais , Antioxidantes/metabolismo , Metabolismo dos Lipídeos , Colecalciferol/farmacologia , Imunidade Inata , Antibacterianos/farmacologia , Braquiúros/metabolismo
4.
Tohoku J Exp Med ; 262(3): 173-180, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123304

RESUMO

SKI-349 is a novel sphingosine kinases (SPHK) inhibitor with anti-tumor effects. This study aimed to assess the effect of SKI-349 on cell biological behaviors, downstream pathways, and its synergistic effect with sorafenib in hepatocellular carcinoma (HCC). HCC cell lines (Huh7 and Hep3B) were treated with SKI-349 at concentrations of 1, 2, 4, or 8 µM. Then, SPHK1/2 activity, cell viability, proliferation, apoptosis, invasion, and protein expressions of phosphorylated-protein kinase B (p-AKT), AKT, phosphorylated-mammalian target of rapamycin (p-mTOR) and mTOR were detected. Combination index values of SKI-349 (0, 1, 2, 4, or 8 µM) and sorafenib (0, 2.5, 5, 10, or 20 µM) were calculated. SKI-349 decreased the relative SPHK1 and SPHK2 activity compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Meanwhile, SKI-349 reduced cell viability, 5-ethynyl-2'-deoxyuridine (EdU) positive cells, and invasive cells, while it increased apoptotic cells compared to blank control in a dose-dependent manner in Huh7 and Hep3B cell lines. Based on the western blot assay, SKI-349 decreased the ratio of p-AKT to AKT and that of p-mTOR to mTOR compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Additionally, SKI-349 combined with sorafenib declined cell viability with concentration gradient effects compared to SKI-349 sole treatment, and they had synergistic cytotoxic effects in Huh7 and Hep3B cell lines. SKI-349 suppresses SPHK1 and SPHK2 activity, cell viability, invasion, and AKT/mTOR signaling pathway, as well as exhibits a synergistic cytotoxic effect with sorafenib in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais , Antineoplásicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , Apoptose , Proliferação de Células
5.
Aquac Nutr ; 2024: 6625061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292025

RESUMO

A 56-day feeding trial assessed the effects of black soldier fly larvae meal (BSFLM) on the growth performance and hepatopancreas health of juvenile Eriocheir sinensis. Six isoproteic and isolipidic diets with 0% (FM), 10% (BSFLM10), 20% (BSFLM20), 30% (BSFLM30), 40% (BSFLM40), or 50% (BSFLM50) replacement of fish meal by BSFLM were formulated. Compared to FM, replacing 10%-40% of fish meal with BSFLM did not significantly affect the weight gain rate (WGR) or specific growth rate (SGR), while BSFLM50 significantly decreased the WGR and SGR. Crabs fed BSFLM50 had significantly lower T-AOC activity than those fed other diets, and crabs fed BSFLM30, BSFLM40, or BSFLM50 had significantly lower activities of antioxidant enzymes (SOD and GSH-Px) in the hepatopancreas than those fed FM or BSFLM10. Compared to FM, BSFLM10, BSFLM20, and BSFLM30 did not affect the relative expression of genes related to the nonspecific immunity, while BSFLM40 and BSFLM50 upregulated the relative expression of these genes. Furthermore, histological analysis showed that the hepatopancreas was deformed in the BSFLM50 group, with widened lumens and loss of basal membrane integrity. In summary, BSFLM replacing 50% of fish meal reduced growth and structural damage to the hepatopancreas. An immune response was activated when the replacement level was over 30%. Therefore, the replacement level of dietary fish meal by BSFLM is recommended to be not more than 30% of the juvenile E. sinensis feed.

6.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572553

RESUMO

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Colesterol , Fígado/metabolismo , Triglicerídeos , Lipoproteínas VLDL , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Mamíferos/metabolismo
7.
Br J Nutr ; 130(6): 933-943, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36573369

RESUMO

Se is an essential trace element associated with animal growth and antioxidant and metabolic processes. However, whether Se, especially organic Se with higher bioavailability, can alleviate the adverse effects of low salinity stress on marine economic crustacean species has not been investigated. Accordingly, juvenile Pacific white shrimp (Litopenaeus vannamei) were reared in two culture conditions (low and standard salinity) fed diets supplemented with increasing levels of l-selenomethionine (0·41, 0·84 and 1·14 mg/kg Se) for 56 d, resulting in four treatments: 0·41 mg/kg under standard seawater (salinity 31) and 0·41, 0·84 and 1·14 mg/kg Se under low salinity (salinity 3). The diet containing 0·84 mg/kg Se significantly improved the survival and weight gain of shrimp under low salinity stress and enhanced the antioxidant capacity of the hepatopancreas. The increased numbers of B and R cells may be a passive change in hepatopancreas histology in the 1·14 mg/kg Se group. Transcriptomic analysis found that l-selenomethionine was involved in the regulatory pathways of energy metabolism, retinol metabolism and steroid hormones. In conclusion, dietary supplementation with 0·84 mg/kg Se (twice the recommended level) effectively alleviated the effects of low salinity stress on L. vannamei by regulating antioxidant capacity, hormone regulation and energy metabolism.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Selênio/farmacologia , Transcriptoma , Hepatopâncreas/metabolismo , Selenometionina/farmacologia , Estresse Fisiológico , Suplementos Nutricionais/análise , Dieta , Estresse Salino , Ração Animal/análise
8.
Fish Shellfish Immunol ; 135: 108663, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898515

RESUMO

Hypoxia is one of the serious stress challenges that aquatic animals face throughout their life. Our previous study found that hypoxia stress could induce neural excitotoxicity and neuronal apoptosis in Eriocheir sinensis, and observed that gamma-aminobutyric acid (GABA) has a positive neuroprotective effect on juvenile crabs under hypoxia. To reveal the neuroprotective pathway and metabolic regulatory mechanism of GABA in E. sinensis exposed to hypoxia stress, an 8-week feeding trial and acute hypoxia challenge were performed. Subsequently, we performed a comprehensive transcriptomic and metabolomic analysis of the thoracic ganglia of juvenile crabs. Differential genes and differential metabolites were co-annotated to 11 KEGG pathways, and further significant analysis showed that only the sphingolipid signaling pathway and the arachidonic acid metabolism pathway were significantly enriched. In the sphingolipid signaling pathway, GABA treatment significantly increased long-chain ceramide content in thoracic ganglia, which exerted neuroprotective effects by activating downstream signals to inhibit hypoxia-induced apoptosis. Moreover, in the arachidonic acid metabolism pathway, GABA could increase the content of neuroprotective active substances and reduce the content of harmful metabolites by regulating the metabolism of arachidonic acid for inflammatory regulation and neuroprotection. Furthermore, the decrease of glucose and lactate levels in the hemolymph suggests the positive role of GABA in metabolic regulation. This study reveals the neuroprotective pathways and possible mechanisms of GABA in juvenile E. sinensis exposed to hypoxia stress and inspires the discovery of new targets for improving hypoxia tolerance in aquatic animals.


Assuntos
Braquiúros , Neuroproteção , Animais , Ácido Araquidônico/farmacologia , Ácido gama-Aminobutírico , Hipóxia , Esfingolipídeos , Braquiúros/genética
9.
Ecotoxicol Environ Saf ; 249: 114399, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508784

RESUMO

The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 µg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 µg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 µg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.


Assuntos
Braquiúros , Doença Hepática Induzida por Substâncias e Drogas , Animais , Tiametoxam , Acetilcolinesterase , Antioxidantes , Dopamina
10.
Aquac Nutr ; 2023: 9775823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023982

RESUMO

Alkalinity stress is the main stress experienced by aquatic animals in saline-alkali water, which hinders the aquaculture development and the utilization of water resources. The two-factor (2 × 3) test was adopted to study the influence of dietary protein to carbohydrate ratios on the energy metabolism of Nile tilapia (Oreochromis niloticus) under different alkalinity stress levels. Three diets with different protein-carbohydrate ratios (P27/C35, P35/C25, and P42/C15) were fed to fish cultured in freshwater (FW, 1.3 mmol/L carbonate alkalinity) or alkaline water (AW, 35.7 mmol/L carbonate alkalinity) for 50 days. Ambient alkalinity decreased tilapia growth performance. Although ambient alkalinity caused oxidative stress and enhanced ion transport and ammonia metabolism in tilapia, tilapia fed the P27/C35 diet showed better adaptability than fish fed the other two diets in alkaline water. Further metabolomic analysis showed that tilapia upregulated all the pathways enriched in this study to cope with alkalinity stress. Under alkalinity stress, tilapia fed the P27/C35 diet exhibited enhanced pyruvate metabolism and purine metabolism compared with tilapia fed the P42/C15 diet. This study indicated that ambient alkalinity could significantly decrease growth performance and cause oxidative stress and osmotic regulation. However, reducing dietary protein content by increasing carbohydrates could weaken stress and improve growth performance, ion transport, and ammonia metabolism in tilapia under long-term hyperalkaline exposure.

11.
Br J Nutr ; 127(5): 666-678, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33910655

RESUMO

This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-ß (CaMKKß)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKß/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.


Assuntos
Ração Animal , Antioxidantes , Proteínas Quinases Ativadas por AMP/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , China , Gorduras na Dieta/farmacologia , Hepatopâncreas/metabolismo , Imunidade Inata , Inositol/farmacologia , Metabolismo dos Lipídeos
12.
Br J Nutr ; 127(5): 653-665, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858522

RESUMO

Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.


Assuntos
Bacillus amyloliquefaciens , Ciclídeos , Acetatos , Ração Animal/análise , Animais , Carboidratos , Dieta/veterinária , Fenótipo
13.
Fish Shellfish Immunol ; 124: 480-489, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35489590

RESUMO

Inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is an immunomodulator to inhibit immune-mediated pro-inflammatory response and has been used to treat various immune-related diseases in mammals. However, the immunoregulatory effect of GABA in crustaceans has not been reported. This study evaluates the regulatory effect of dietary GABA supplementation on the innate immune status and immunoregulatory potential in lipopolysaccharide (LPS)-induced immune response in juvenile Eriocheir sinensis. Juvenile crabs were fed with six diets supplemented with graded GABA levels (0, 40, 80, 160, 320 and 640 mg/kg dry matter) for 8 weeks and then 24 h LPS challenge test was carried out. The results showed that dietary GABA supplementation significantly decreased mortality at 4 and 8 weeks. Moreover, the hemocyanin content, acid phosphatase, and alkaline phosphatase activities significantly increased in the crabs fed GABA supplementation compared with the control. On the contrary, the alanine aminotransferase and alanine aminotransferase activities in serum decreased significantly in the GABA supplementation groups compared with the control. Similarly, superoxide dismutase activity, glutathione content, and the transcriptional expression of the antioxidant-related genes and immune-related genes were significantly higher in the GABA supplementation groups than in the control. In addition, the mRNA expressions of anti-lipopolysaccharide factors (ALF 1, ALF 2, ALF 3) and inflammatory signaling pathways related genes (TLR, Myd88, Relish, LITAF, P38-MAPK, ADAM17) were significantly up-regulated in LPS stimulation groups compared with PBS treatment. Meanwhile, pro-apoptosis-related genes' mRNA expressions were significantly up-regulated, and anti-apoptosis-related genes were significantly down-regulated under LPS stimulation compared with PBS treatment. However, GABA pretreatment effectively alleviated LPS-induced immune overresponse and apoptosis. Therefore, this study demonstrates that dietary GABA supplementation could be used as an immunomodulator to improve the non-specific immunity and antioxidant capacity and alleviate the immune-mediated immune overresponse of juvenile E. sinensis.


Assuntos
Braquiúros , Lipopolissacarídeos , Alanina Transaminase , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Braquiúros/metabolismo , China , Dieta/veterinária , Imunidade Inata , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , RNA Mensageiro , Ácido gama-Aminobutírico/farmacologia
14.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843526

RESUMO

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Assuntos
Bacillus amyloliquefaciens , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carboidratos , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/prevenção & controle , Inflamação/veterinária , Fígado/metabolismo
15.
Aquac Nutr ; 2022: 8016616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860444

RESUMO

Since high-fat diet (HFD) intake elevates liver cholesterol and enhanced cholesterol-bile acid flux alleviates its lipid deposition, we assumed that the promoted cholesterol-bile acid flux is an adaptive metabolism in fish when fed an HFD. The present study investigated the characteristic of cholesterol and fatty acid metabolism in Nile tilapia (Oreochromis niloticus) after feeding an HFD (13% lipid level) for four and eight weeks. Visually healthy Nile tilapia fingerlings (average weight 3.50 ± 0.05 g) were randomly distributed into four treatments (4-week control diet or HFD and 8-week control diet or HFD). The liver lipid deposition and health statue, cholesterol/bile acid, and fatty acid metabolism were analyzed in fish after short-term and long-term HFD intake. The results showed that 4-week HFD feeding did not change serum alanine transaminase (ALT) and aspartate transferase (AST) enzyme activities, along with comparable liver malondialdehyde (MDA) content. But higher serum ALT and AST enzyme activities and liver MDA content were observed in fish fed 8-week HFD. Intriguingly, remarkably accumulated total cholesterol (mainly cholesterol ester, CE) was observed in the liver of fish fed 4-week HFD, along with slightly elevated free fatty acids (FFAs) and comparable TG contents. Further molecular analysis in the liver showed that obvious accumulation of CE and total bile acids (TBAs) in fish fed 4-week HFD was mainly attributed to the enhancement of cholesterol synthesis, esterification, and bile acid synthesis. Furthermore, the increased protein expressions of acyl-CoA oxidase 1/2 (Acox1 and Acox2), which serve as peroxisomal fatty acid ß-oxidation (FAO) rate-limiting enzymes and play key roles in the transformation of cholesterol into bile acids, were found in fish after 4-week HFD intake. Notably, 8-week HFD intake remarkably elevated FFA content (about 1.7-fold increase), and unaltered TBAs were found in fish liver, accompanied by suppressed Acox2 protein level and cholesterol/bile acid synthesis. Therefore, the robust cholesterol-bile acid flux serves as an adaptive metabolism in Nile tilapia when fed a short-term HFD and is possibly via stimulating peroxisomal FAO. This finding enlightens our understanding on the adaptive characteristics of cholesterol metabolism in fish fed an HFD and provides a new possible treatment strategy against metabolic disease induced by HFD in aquatic animals.

16.
Br J Nutr ; 126(2): 161-171, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046150

RESUMO

A high-carbohydrate diet could achieve a protein-sparing effect, but it may cause negative impacts on the growth condition of fish due to their poor utilisation ability of carbohydrate. How to reduce the adverse effects caused by a high-carbohydrate diet is important for the development of aquaculture. In the present study, we aimed to identify whether inulin could attenuate the metabolic syndrome caused by a high-carbohydrate diet in fish. Nile tilapia (Oreochromis niloticus) (1·19 (sd 0·01) g) were supplied with 35 % carbohydrate (CON), 45 % carbohydrate (HC) and 45 % carbohydrate + 5 g/kg inulin (HCI) diets for 10 weeks. The results showed that addition of inulin improved the survival rate when fish were challenged with Aeromonas hydrophila, indicating that inulin had an immunostimulatory effect. Compared with the HC group, the HCI group had lower lipid accumulation in liver and the gene expression analyses indicated that addition of inulin down-regulated genes related to lipogenesis and up-regulated genes relevant to ß-oxidation significantly (P < 0·05). Higher liver glycogen and glucose tolerance were found in the HCI group compared with the HC group (P < 0·05). These results indicated that inulin could alleviate the metabolic syndrome induced by a high-carbohydrate diet. Furthermore, addition of inulin to a high-carbohydrate diet changed the intestinal bacterial composition and significantly increased the concentration of acetic acid and propionic acid in fish gut which have the potential to increase pathogen resistance and regulate metabolic characteristics in fish. Collectively, our results demonstrated a possible causal role for the gut microbiome in metabolic improvements induced by inulin in fish.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Inulina/farmacologia , Síndrome Metabólica , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Síndrome Metabólica/veterinária
17.
Gen Comp Endocrinol ; 303: 113704, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359664

RESUMO

The ability of immune defense and resistance to physiological stress is crucial to animal health and survival. This study investigated the regulation of γ-aminobutyric acid (GABA) on metabolic homeostasis and its enhancement of hepatopancreas health in juvenile Chinese mitten crab (Eriocheir sinensis) under food deprivation. Juvenile crabs of 400 individuals were divided into four treatment groups: a control group without injection, and injections with a phosphate-buffered saline solution, 100 µmol GABA/mL and 1000 µmol GABA/mL, respectively. Hypoglycemia was induced by fasting, whereas the GABA treatment regulated hemolymph glucose homeostasis. The quantitative real-time PCR (qRT-PCR) results showed that the GABA treatment significantly up-regulated the mRNA expression levels of crustacean hyperglycemic hormone (CHH) and pyruvate kinase (PK). In contrast, the expression of E. sinensis insulin-like peptide (EsILP) was significantly down-regulated in the cranial ganglia, thoracic ganglia and hepatopancreas. Moreover, acid phosphatase (ACP), alkaline phosphatase (AKP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly increased in the hepatopancreas by the GABA treatment. Furthermore, the hemocyanin content in serum was significantly increased with the GABA injection, and the glutathione (GSH) content, total superoxide dismutase (T-SOD) activity and catalase (CAT) activity in the hepatopancreas showed a similar increasing trend with the dose elevation of GABA. Therefore, these results indicate that GABA can effectively maintain the hemolymph glucose homeostasis by regulating the levels of glucose metabolism-related hormones and key enzymes to promote the degradation and utilization of hepatopancreas glycogen. Meanwhile, GABA can improve the hepatopancreas function and immune status of juvenile E. sinensis under fasting stress. The treatment with GABA may provide a clue to guide health management in crab farming.


Assuntos
Braquiúros , Hepatopâncreas , Animais , China , Jejum , Glucose , Homeostase , Imunidade Inata , Ácido gama-Aminobutírico
18.
Fish Physiol Biochem ; 47(1): 173-188, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33245450

RESUMO

The adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL)-mediated lipolysis play important roles in lipid catabolism. ATGL is considered the central rate-limiting enzyme in the mobilization of fatty acids in mammals. Currently, severe fat accumulation has been commonly detected in farmed fish globally. However, the ATGL-mediated lipolysis and the potential synergy among ATGL, HSL, and autophagy, which is another way for lipid breakdown, have not been intensively understood in fish. In the present study, we added Atglistatin as an ATGL-specific inhibitor into the zebrafish diet and fed to the fish for 5 weeks. The results showed that the Atglistatin-treated fish exhibited severe fat deposition, reduced oxygen consumption, and fatty acid ß-oxidation, accompanied with increased oxidative stress and inflammation. Furthermore, the Atglistatin-treated fish elevated total and phosphorylation protein expressions of HSL. However, the free fatty acids and lipase activities in organs were still systemically reduced in the Atglistatin-treated fish, and the autophagy marker LC3 was also decreased in the liver. On the other hand, glycogenolysis was stimulated but blood glucose was higher in the Atglistatin-treated fish. The transcriptomic analysis also provided the hint that the protein turnover efficiency in Atglistatin-treated fish was likely to be accelerated, but the protein content in whole fish was not affected. Taken together, ATGL plays crucial roles in energy homeostasis such that its inhibition causes loss of lipid-sourced energy production, which cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Proteínas de Peixes/antagonistas & inibidores , Lipase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Lipase/genética , Lipase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nutrientes/metabolismo , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
J Physiol ; 598(20): 4537-4553, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710562

RESUMO

KEY POINTS: The pparab subtype in zebrafish is much more highly expressed in tissues with high oxidative activity than pparaa. The pparab deficiency in zebrafish reduces fatty acid ß-oxidation both in liver and muscle, illustrating its functional homology as a mammalian peroxisome proliferator-activated receptor α (PPARα). pparab deficiency promotes metabolic reprogramming by increasing glucose utilization and inhibiting amino acid breakdown. The present study brings new insights into the comprehensive regulatory roles of PPARα in the cellular fuel selection and provides a valuable animal model for PPARα studies from a viewpoint of comparative physiology. ABSTRACT: Dysfunction of lipid metabolism is involved in the pathogenesis of several chronic metabolic diseases. Peroxisome proliferator-activated receptor α (PPARα) is essential for normal metabolic homeostasis and, in particular, for the regulation of fatty acid ß-oxidation (FAO). However, little is known about its regulation roles in systemic nutrient metabolism. To explore the underlying modulation role of PPARα in metabolic homeostasis, we generated a pparab-knockout zebrafish (Danio rerio) model. The pparab mutants demonstrated lower expression of key enzymes involved in FAO, as well as lower mitochondrial and peroxisomal FAO in tissues, which was associated with lipid accumulation in liver and visceral mass. Conversely, glucose utilization was higher because they demonstrated lower blood glucose and tissue glycogen concentrations, as well as activation of the phosphoinositide 3-kinase/AKT pathway. In addition, pparab-deficient zebrafish demonstrated activation of AKT/mammalian target of rapamycin signalling and higher protein content, implying greater protein synthesis and/or lower amino acid breakdown. These data clearly revealed that pparab deletion reduces FAO but increases glucose utilization and protein deposition to maintain energy homeostasis. The present study provides new insights into the comprehensive regulatory role of PPARα in systemic energy metabolism in fish, and this pparab-deficient zebrafish also constitutes a valuable model for investigating the functions of PPARα in mammals from comparative physiology aspects.


Assuntos
PPAR alfa , Peixe-Zebra , Animais , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Nutrientes , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
20.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720689

RESUMO

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Proteínas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Ciclídeos , Citocromos b/genética , Citocromos b/metabolismo , DNA , Metabolismo Energético , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Homeostase , Insulina , Masculino , Mutação , Oxirredução , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA