Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(10)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995361

RESUMO

In this study, platinum (Pt) and tungsten (W), two materials with dissimilar coefficients of thermal expansion (CTE) and work functions (WF), are used as the top electrode (TE) and the bottom electrode (BE) in metal/ferroelectric/metal (MFM) structures to explore the ferroelectricity of hafnium zirconium oxide (HZO) with a thickness less than 10 nm. The electrical measurements indicate that a higher CTE mismatch between HZO and TE/BE is beneficial for enhancing the ferroelectric properties of nanoscale HZO thin films. The different WFs of TE and BE generate a built-in electric field in the HZO layer, leading to shifts in the hysteresis loops and the capacitance-voltage characteristics. The structural characterizations reveal that the preferred formation of the orthorhombic phase in HZO is dominated by the W BE. The device in which W is used as the TE and BE (the W/HZO/W MFM structure) presents the optimal ferroelectric performance of a high remanent polarization (2Pr= 55.2µC cm-2). The presence of tungsten oxide (WOx) at the W/HZO interfaces, as revealed by high-resolution transmission microscopy, is also responsible for the enhancement of ferroelectric properties. This study demonstrates the significant effects of different CTEs and WFs of TE and BE on the properties of ferroelectric HZO thin films.

2.
J Phys Chem A ; 120(41): 8114-8122, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27689391

RESUMO

We acquired the Raman spectra of adenine in powder and aqueous phase using excitation lasers with 532, 633, and 785 nm wavelengths for the region between 300 and 1500 cm-1. In comparison to the most distinct peak at 722 cm-1, the peaks between 1200 and 1500 cm-1 exhibited a characteristic increase in cross-section with decreasing excitation wavelength in both phases. This trend can be reproduced by different density functional theory (DFT) calculations for the adenine molecule in the gas phase as well as in the aqueous phase. Furthermore, from the calculation on the π-stacked dimer, hydrogen-bonded dimer, and trimer, we find that this trend toward excitation laser wavelength is not sensitive to the packing. When comparing the Raman spectra given by different excitation wavelength, one should take care in analyzing the cross-section, and present day DFT calculations are able to capture general trends in the excitation laser wavelength dependence of the Raman activity.

3.
Nanotechnology ; 26(1): 014002, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25494474

RESUMO

The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate.

4.
Nanotechnology ; 26(26): 265702, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26057412

RESUMO

Plasmonic silver nanostructures and a precise ZnO cover layer prepared by capacitively coupled plasma atomic layer deposition (ALD) were exploited to enhance the Raman scattering from nanoscale ultrathin films on a Si substrate. The plasmonic activity was supported by a nanostructured Ag (nano-Ag) layer, and a ZnO cover layer was introduced upon the nano-Ag layer to spectrally tailor the localized surface plasmon resonance to coincide with the laser excitation wavelength. Because of the optimized dielectric environment provided by the precise growth of ZnO cover layer using ALD, the intensity of Raman scattering from nanoscale ultrathin films was significantly enhanced by an additional order of magnitude, leading to the observation of the monoclinic and tetragonal phases in the nanoscale ZrO2 high-K gate dielectric as thin as ∼6 nm on Si substrate. The excellent agreement between the finite-difference time-domain simulation and experimental measurement further confirms the so-called [absolute value]E(->)[absolute value](4) dependence of the surface-enhanced Raman scattering. This technique of plasmonic enhancement of Raman spectroscopy, assisted by the nano-Ag layer and optimized dielectric environment prepared by ALD, can be applied to characterize the structures of ultrathin films in a variety of nanoscale materials and devices, even on a Si substrate with overwhelming Raman background.

5.
Adv Sci (Weinh) ; 10(32): e2302770, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759405

RESUMO

Atomic layer engineering is investigated to tailor the morphotropic phase boundary (MPB) between antiferroelectric, ferroelectric, and paraelectric phases. By increasing the HfO2 seeding layer with only 2 monolayers, the overlying ZrO2 layer experiences the dramatic phase transition across the MPB. Conspicuous ferroelectric properties including record-high remanent polarization (2Pr ≈ 60 µC cm-2 ), wake-up-free operation, and high compatibility with advanced semiconductor technology nodes, are achieved in the sub-6 nm thin film. The prominent antiferroelectric to ferroelectric phase transformation is ascribed to the in-plane tensile stress introduced into ZrO2 by the HfO2 seeding layer. Based on the high-resolution and high-contrast images of surface grains extracted precisely by helium ion microscopy, the evolution of the MPB between tetragonal, orthorhombic, and monoclinic phases with grain size is demonstrated for the first time. The result indicates that a decrease in the average grain size drives the crystallization from the tetragonal to polar orthorhombic phases.

6.
Materials (Basel) ; 16(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37763427

RESUMO

In recent years, aluminum matrix composites (AMCs) have attracted attention due to their promising properties. However, the presence of ceramic particles in the aluminum matrix renders AMCs a high corrosion rate and makes it challenging to use traditional corrosion protection methods. In this study, atomic layer deposition (ALD) techniques were used to deposit HfO2, ZrO2, TiO2, and Al2O3 thin films on AMC reinforced with 20 vol.% SiC particles. Our results indicate that the presence of micro-cracks between the Al matrix and SiC particles leads to severe micro-crack-induced corrosion in Al-SiC composites. The ALD-deposited films effectively enhance the corrosion resistance of these composites by mitigating this micro-crack-induced corrosion. Among these four atomic-layer deposited films, the HfO2 film exhibits the most effective reduction in the corrosion current density of Al-SiC composites in a 1.5 wt% NaCl solution from 1.27 × 10-6 A/cm2 to 5.89 × 10-11 A/cm2. The electrochemical impedance spectroscopy (EIS) investigation shows that HfO2 deposited on Al-SiC composites has the largest Rp value of 2.0 × 1016. The HfO2 film on Al-SiC composites also exhibits effective inhibition of pitting corrosion, remaining at grade 10 even after 96 h of a salt spray test.

7.
J Biomed Mater Res B Appl Biomater ; 110(3): 527-534, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34492134

RESUMO

For cardiopulmonary bypass, the polyvinyl chloride (PVC) circuit which can initiate the activation of platelets and the coagulation cascade after blood cell contacting is the possible detrimental effect. Surface coating of the PVC tubing system can be an effective approach to enhance circuit's hemocompatibility. In this study, aluminum oxide (Al2 O3 ) thin films were deposited through thermal atomic layer deposition (T-ALD) or plasma-enhanced ALD (PE-ALD) on PVC samples, and the anticoagulation of the Al2 O3 -coated PVC samples was demonstrated. The results revealed that Al2 O3 deposition through ALD increased surface roughness, whereas T-ALD had a relative hydrophilicity compared with blank PVC and PE-ALD. Whole blood immersion tests showed that blood clots formed on blank PVC and that a large amount of red blood cells was found on PE-ALD substrates, whereas less blood cells were noted in T-ALD samples. Both T-ALD and PE-ALD Al2 O3 films did not cause activation of blood cells, as evidenced in CD3+ /CD4+ /CD8+ , CD61+ /CD62P+ , and CD45+ /CD42b+ populations. Analysis of serum coagulation factors showed that a lower amount of prothrombin was absorbed on T-ALD Al2 O3 samples than that on blank PVC. For albumin and fibrinogen immersion tests, immunostaining and scanning electron microscopy further revealed that a thin albumin layer was absorbed on T-ALD Al2 O3 substrates but not on PVC samples. This study revealed that deposition of Al2 O3 films by T-ALD can improve anticoagulation of the PVC tubing system.


Assuntos
Óxido de Alumínio , Cloreto de Polivinila , Óxido de Alumínio/farmacologia , Anticoagulantes , Ponte Cardiopulmonar
8.
Opt Express ; 18(7): 7397-406, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389762

RESUMO

Direct-backward third harmonic generation (DBTHG) has been regarded as negligible or even inexistent due to the large value of wave-vector mismatch. In the past, BTHG signals were often interpreted as back-reflected or back-scattered forward-THG (FTHG). In this paper, we theoretically and experimentally demonstrate that backward third harmonic waves can be directly generated, and that their magnitude can be comparable with FTHG in nanostructures. Experimental data of DBTHG from ZnO thin films, CdSe quantum dots and Fe(3)O(4) nanoparticles agree well with simulation results based on the Green's function. An integral equation was also derived for fast computation of DBTHG in nano films. Our investigation suggests that DBTHG can be a potentially powerful tool in nano-science research, especially when combined with FTHG measurements.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Óptica e Fotônica , Algoritmos , Simulação por Computador , Compostos Férricos/química , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Distribuição Normal , Pontos Quânticos
9.
Ultramicroscopy ; 211: 112952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32044708

RESUMO

Helium ion beam induced deposition (HIBID) is an attractive technique capable of precise fabrication of nanostructures. However, the damage caused by helium ion irradiation is the major drawback of conventional HIBID. In this study, area-selective atomic layer deposition (ALD) accompanied with the HIBID technique is explored to solve this problem. A platinum (Pt) seed layer was prepared by HIBID with a helium dose much lower than that of the conventional HIBID to reduce the damage due to the bombardment of energetic ions. Afterwards, Pt was selectively deposited on the seed layer to achieve area-selective ALD. Accordingly, the Pt nanolines with a feature size of ~15 nm are accomplished by the area-selective ALD and the HIBID technique under the condition of the damage-free does.

10.
Nanoscale Res Lett ; 15(1): 154, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728964

RESUMO

Characteristics of atomic layer deposition (ALD)-grown ZnO thin films on sapphire substrates with and without three-pulsed ozone (O3) as oxidant precursor and post-deposition thermal annealing (TA) are investigated. Deposition temperature and thickness of ZnO epilayers are 180 °C and 85 nm, respectively. Post-deposition thermal annealing is conducted at 300 °C in the ambience of oxygen (O2) for 1 h. With strong oxidizing agent O3 and post-deposition TA in growing ZnO, intrinsic strain and stress are reduced to 0.49% and 2.22 GPa, respectively, with extremely low background electron concentration (9.4 × 1015 cm-3). This is originated from a lower density of thermally activated defects in the analyses of thermal quenching of the integrated intensity of photoluminescence (PL) spectra. TA further facilitates recrystallization forming more defect-free grains and then reduces strain and stress state causing a remarkable decrease of electron concentration and melioration of surface roughness.

11.
J Biomed Opt ; 14(3): 034016, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19566309

RESUMO

The morphologic changes of living cells under drug interactions were studied by using 80-nm gold nanoparticles and dark-field optical section microscopy. The gold nanoparticles were coated with poly (L-lysine), which attached to the membranes of various cells by way of electrostatic attractive force. A three-dimensional (3-D) morphological image was obtained by measuring the peak scattering intensities of gold nanoparticles at different focal planes. An algorithm for the reconstruction of 3-D cell morphology was presented. With the measured nanoparticle images and calculations, we show morphologic changes of lung cancer cells under the interaction of cytochalasin D drug at different times.


Assuntos
Células/citologia , Ouro/química , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas Metálicas/química , Microscopia/métodos , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/patologia , Forma Celular/efeitos dos fármacos , Células/efeitos dos fármacos , Células/metabolismo , Células Cultivadas , Citocalasina D/farmacologia , Ouro/metabolismo , Ouro/toxicidade , Células HeLa , Humanos , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/toxicidade , Ressonância de Plasmônio de Superfície , Distribuição Tecidual/efeitos dos fármacos , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
12.
Nanotechnology ; 20(16): 165201, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19420563

RESUMO

This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

13.
Nanotechnology ; 20(44): 445202, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801782

RESUMO

Si nanocrystals embedded in a SiO2 matrix and an n-type Al-doped ZnO (ZnO:Al) layer were applied to improve the external quantum efficiency from Si in n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterojunction light-emitting diodes (LEDs). The Si nanocrystals were grown by low pressure chemical vapor deposition and the ZnO:Al layer was prepared by atomic layer deposition. The n-type ZnO:Al layer acts as an electron injection layer, a transparent conductive window, and an anti-reflection coating to increase the light extraction efficiency. Owing to the spatial confinement of carriers and surface passivation by the surrounding SiO2, the Si nanocrystals embedded in the SiO2 matrix lead to a significant enhancement of the light emission efficiency from Si. An external quantum efficiency up to 4.3 x 10(-4) at the wavelength corresponding to the indirect bandgap of Si was achieved at room temperature.

14.
RSC Adv ; 9(22): 12226-12231, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35515870

RESUMO

AlN thin films were epitaxially grown on a 4H-SiC substrate via atomic layer deposition (ALD) along with atomic layer annealing (ALA). By applying the layer-by-layer, in situ ALA treatment using helium/argon plasma in each ALD cycle, the as-deposited film gets crystallization energy from the plasma, which results in significant enhancement of the crystal quality to achieve a highly crystalline AlN epitaxial layer at a deposition temperature as low as 300 °C. In a nanoscale AlN epitaxial layer with a thickness of ∼30 nm, X-ray diffraction reveals a low full-width-at-half-maximum of the AlN (0002) peak of only 176.4 arcsec. Atomic force microscopy, high-resolution transmission electron microscopy, and Fourier diffractograms indicate a smooth surface and high-quality hetero-epitaxial growth of a nanoscale AlN layer on 4H-SiC. This research demonstrates the impact of the ALA treatment on the evolution of ALD techniques from conventional thin film deposition to low-temperature atomic layer epitaxy.

15.
RSC Adv ; 9(2): 592-598, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517609

RESUMO

For high-performance nanoscale Ge-based transistors, one important point of focus is interfacial germanium oxide (GeO x ), which is thermodynamically unstable and easily desorbed. In this study, an atomic-layer-deposited AlN buffer layer was introduced between the crystalline ZrO2 high-K gate dielectrics and epitaxial Ge, in order to reduce the formation of interfacial GeO x . The results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy demonstrate that the AlN buffer layer suppressed the formation of interfacial GeO x . Hence, significant enhancement of the electrical characteristics of Ge metal-oxide-semiconductor (MOS) capacitors was achieved with a two-orders-of-magnitude reduction in the gate leakage current, a 34% enhancement of the MOS capacitance, and a lower interfacial state density. The results indicate that the AlN buffer layer is effective in providing a high-quality interface to improve the electrical performance of advanced Ge MOS devices.

16.
Sci Rep ; 7(1): 875, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408744

RESUMO

Metallic channel transistors have been proposed as the candidate for sub-10 nm technology node. However, the conductivity modulation in metallic channels can only be observed at low temperatures usually below 100 K. In this study, room-temperature field effect and modulation of the channel resistance was achieved in the metallic channel transistors, in which the oxygen-doped TiN ultrathin-body channels were prepared by the atomic layer delta doping and deposition (AL3D) with precise control of the channel thickness and electron concentration. The decrease of channel thickness leads to the reduction in electron concentration and the blue shift of absorption spectrum, which can be explained by the onset of quantum confinement effect. The increase of oxygen incorporation results in the increase of interband gap energy, also giving rise to the decrease in electron concentration and the blue shift of absorption spectrum. Because of the significant decrease in electron concentration, the screening effect was greatly suppressed in the metallic channel. Therefore, the channel modulation by the gate electric field was achieved at room temperature due to the quantum confinement and suppressed screening effect with the thickness down to 4.8 nm and the oxygen content up to 35% in the oxygen-doped TiN ultrathin-body channel.

17.
Sci Rep ; 7: 39717, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045075

RESUMO

Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

18.
Sci Rep ; 6: 29625, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27404325

RESUMO

It is very difficult to realize sub-3 nm patterns using conventional lithography for next-generation high-performance nanosensing, photonic, and computing devices. Here we propose a completely original and novel concept, termed self-shrinking dielectric mask (SDM), to fabricate sub-3 nm patterns. Instead of focusing the electron and ion beams or light to an extreme scale, the SDM method relies on a hard dielectric mask which shrinks the critical dimension of nanopatterns during the ion irradiation. Based on the SDM method, a linewidth as low as 2.1 nm was achieved along with a high aspect ratio in the sub-10 nm scale. In addition, numerous patterns with assorted shapes can be fabricated simultaneously using the SDM technique, exhibiting a much higher throughput than conventional ion beam lithography. Therefore, the SDM method can be widely applied in the fields which need extreme nanoscale fabrication.

19.
ACS Appl Mater Interfaces ; 7(19): 10228-37, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25919200

RESUMO

In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

20.
Sci Rep ; 5: 13671, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329829

RESUMO

High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA