Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Nature ; 626(7997): 72-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297173

RESUMO

Recent breakthroughs in fibre technology have enabled the assembly of functional materials with intimate interfaces into a single fibre with specific geometries1-11, delivering diverse functionalities over a large area, for example, serving as sensors, actuators, energy harvesting and storage, display, and healthcare apparatus12-17. As semiconductors are the critical component that governs device performance, the selection, control and engineering of semiconductors inside fibres are the key pathways to enabling high-performance functional fibres. However, owing to stress development and capillary instability in the high-yield fibre thermal drawing, both cracks and deformations in the semiconductor cores considerably affect the performance of these fibres. Here we report a mechanical design to achieve ultralong, fracture-free and perturbation-free semiconductor fibres, guided by a study on stress development and capillary instability at three stages of the fibre formation: the viscous flow, the core crystallization and the subsequent cooling stage. Then, the exposed semiconductor wires can be integrated into a single flexible fibre with well-defined interfaces with metal electrodes, thereby achieving optoelectronic fibres and large-scale optoelectronic fabrics. This work provides fundamental insights into extreme mechanics and fluid dynamics with geometries that are inaccessible in traditional platforms, essentially addressing the increasing demand for flexible and wearable optoelectronics.

2.
N Engl J Med ; 391(7): 585-597, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828946

RESUMO

BACKGROUND: Osimertinib is a recommended treatment for advanced non-small-cell lung cancer (NSCLC) with an epidermal growth factor receptor (EGFR) mutation and as adjuvant treatment for resected EGFR-mutated NSCLC. EGFR tyrosine kinase inhibitors have shown preliminary efficacy in unresectable stage III EGFR-mutated NSCLC. METHODS: In this phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with unresectable EGFR-mutated stage III NSCLC without progression during or after chemoradiotherapy to receive osimertinib or placebo until disease progression occurred (as assessed by blinded independent central review) or the regimen was discontinued. The primary end point was progression-free survival as assessed by blinded independent central review. RESULTS: A total of 216 patients who had undergone chemoradiotherapy were randomly assigned to receive osimertinib (143 patients) or placebo (73 patients). Osimertinib resulted in a significant progression-free survival benefit as compared with placebo: the median progression-free survival was 39.1 months with osimertinib versus 5.6 months with placebo, with a hazard ratio for disease progression or death of 0.16 (95% confidence interval [CI], 0.10 to 0.24; P<0.001). The percentage of patients who were alive and progression free at 12 months was 74% (95% CI, 65 to 80) with osimertinib and 22% (95% CI, 13 to 32) with placebo. Interim overall survival data (maturity, 20%) showed 36-month overall survival among 84% of patients with osimertinib (95% CI, 75 to 89) and 74% with placebo (95% CI, 57 to 85), with a hazard ratio for death of 0.81 (95% CI, 0.42 to 1.56; P = 0.53). The incidence of adverse events of grade 3 or higher was 35% in the osimertinib group and 12% in the placebo group; radiation pneumonitis (majority grade, 1 to 2) was reported in 48% and 38%, respectively. No new safety concerns emerged. CONCLUSIONS: Treatment with osimertinib resulted in significantly longer progression-free survival than placebo in patients with unresectable stage III EGFR-mutated NSCLC. (Funded by AstraZeneca; LAURA ClinicalTrials.gov number, NCT03521154.).


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acrilamidas/uso terapêutico , Acrilamidas/efeitos adversos , Compostos de Anilina/uso terapêutico , Compostos de Anilina/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Método Duplo-Cego , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Indóis , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Estadiamento de Neoplasias , Intervalo Livre de Progressão , Pirimidinas , /uso terapêutico
3.
Proc Natl Acad Sci U S A ; 121(25): e2402384121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865272

RESUMO

Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.


Assuntos
Mitocôndrias , Oxirredutases , Proteínas de Plantas , Epitélio Pigmentado da Retina , Animais , Mitocôndrias/metabolismo , Camundongos , Oxirredutases/metabolismo , Oxirredutases/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia
4.
Proc Natl Acad Sci U S A ; 121(23): e2322283121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814873

RESUMO

Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.

5.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
6.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Assuntos
Moléculas de Adesão Celular , Fator VIII , Cininogênios , Lectinas Tipo C , Receptores de Superfície Celular , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Polimorfismo de Nucleotídeo Único , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Trombose/genética , Trombose/sangue , Estudos de Associação Genética , Masculino , Células Endoteliais/metabolismo , Feminino
7.
Plant Physiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829837

RESUMO

Soybean (Glycine max [L.] Merr.) is a valuable oil crop but is also highly susceptible to environmental stress. Thus, developing approaches to enhance soybean stress resistance is vital to soybean yield improvement. In previous studies, transcription factor Alfin has been shown to serve as an epigenetic regulator of plant growth and development. However, no studies on Alfin have yet been reported in soybean. In this study, the endoplasmic reticulum (ER) stress- and reactive oxygen species (ROS)-related GmAlfin09 was identified. Screening of genes co-expressed with GmAlfin09 unexpectedly led to the identification of soybean peroxidase 6 (GmPRDX6). Further analyses revealed that both GmAlfin09 and GmPRDX6 were responsive to ER stress, with GmPRDX6 localizing to the ER under stress. Promoter binding experiments confirmed the ability of GmAlfin09 to bind to the GmPRDX6 promoter directly. When GmAlfin09 and GmPRDX6 were overexpressed in soybean, enhanced ER stress resistance and decreased ROS levels were observed. Together, these findings suggest that GmAlfin09 promotes the upregulation of GmPRDX6, and GmPRDX6 subsequently localizes to the ER, reduces ROS levels, promotes ER homeostasis, and ensures the normal growth of soybean even under ER stress. This study highlights a vital target gene for future molecular breeding of stress-resistant soybean lines.

8.
Mol Psychiatry ; 29(3): 793-808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145987

RESUMO

Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Morfina , Neurônios , Núcleo Accumbens , Síndrome de Abstinência a Substâncias , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Masculino , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia , Morfina/farmacologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Memória/fisiologia , Receptores de AMPA/metabolismo , Ratos , Dependência de Morfina/metabolismo , Tonsila do Cerebelo/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vias Neurais/metabolismo , Córtex Pré-Frontal/metabolismo
9.
BMC Biol ; 22(1): 143, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937802

RESUMO

BACKGROUND: The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS: We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS: Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.


Assuntos
Elementos de DNA Transponíveis , Hematopoese , Células-Tronco Hematopoéticas , Análise de Célula Única , Animais , Elementos de DNA Transponíveis/genética , Análise de Célula Única/métodos , Camundongos , Hematopoese/genética , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais/metabolismo
10.
Nano Lett ; 24(23): 7040-7047, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804573

RESUMO

Flexible pressure sensors with a broad range and high sensitivity are greatly desired yet challenging to build. Herein, we have successfully fabricated a pressure-temperature dual sensor via an ionic assisted charge enhancement strategy. Benefiting from the immobilization effect for [EMIM+] [TFSI-] ion pairs and charge transfer between ionic liquid (IL) and HFMO (H10Fe3Mo21O51), the formed IL-HFMO-TPU pressure sensor shows a high sensitivity of 25.35 kPa-1 and broad sensing range (∼10 MPa), respectively. Furthermore, the sensor device exhibits high durability and stability (5000 cycles@1 MPa). The IL-HFMO-TPU sensor also shows the merit of good temperature sensing properties. Attributed to these superior properties, the proposed sensor device could detect pressure in an ultrawide sensing range (from Pa to MPa), including breathe and biophysical signal monitoring etc. The proposed ionic assisted enhancement approach is a generic strategy for constructing high performance flexible pressure-temperature dual sensor.

11.
Nano Lett ; 24(22): 6778-6787, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767965

RESUMO

Controllable large-scale integration of two-dimensional (2D) materials with organic semiconductors and the realization of strong coupling between them still remain challenging. Herein, we demonstrate a wafer-scale, vertically layered SnSe2/PTAA heterojunction array with high light-trapping ability via a low-temperature molecular beam epitaxy method and a facile spin-coating process. Conductive probe atomic force microscopy (CP-AFM) measurements reveal strong rectification and photoresponse behavior in the individual SnSe2 nanosheet/PTAA heterojunction. Theoretical analysis demonstrates that vertically layered SnSe2/PTAA heterojunctions exhibit stronger C-Se covalent coupling than that of the conventional tiled type, which could facilitate more efficient charge transfer. Benefiting from these advantages, the SnSe2/PTAA heterojunction photodetectors with an optimized PTAA concentration show high performance, including a responsivity of 41.02 A/W, an external quantum efficiency of 1.31 × 104%, and high uniformity. The proposed approach for constructing large-scale 2D inorganic-organic heterostructures represents an effective route to fabricate high-performance broadband photodetectors for integrated optoelectronic systems.

12.
Lancet Oncol ; 25(2): 235-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215764

RESUMO

BACKGROUND: Carvedilol improves cardiac function in patients with heart failure but remains untested as cardioprotective therapy in long-term childhood cancer survivors (ie, those who have completed treatment for childhood cancer and are in remission) at risk for heart failure due to high-dose anthracycline exposure. We aimed to evaluate the activity and safety of low-dose carvedilol for heart failure risk reduction in childhood cancer survivors at highest risk for heart failure. METHODS: PREVENT-HF was a randomised, double-blind, phase 2b trial done at 30 hospitals in the USA and Canada. Patients were eligible if they had any cancer diagnosis that resulted in at least 250 mg/m2 cumulative exposure to anthracycline by age 21 years; completed their cancer treatment at least 2 years previously; an ejection fraction of at least 50% or fractional shortening of at least 25%, or both; and bodyweight of at least 40 kg. Patients were randomly assigned (1:1) with automated computer-generated permuted block randomisation (block size of 4), stratified by age at diagnosis, time since diagnosis, and history of chest-directed radiotherapy, to carvedilol (up-titrated from 3·125 g per day to 12·5 mg per day) or placebo orally for 2 years. Participants, staff, and investigators were masked to study group allocation. The primary endpoint was to establish the effect of carvedilol on standardised left ventricular wall thickness-dimension ratio Z score (LVWT/Dz). Treatment effects were analysed with a linear mixed-effects model for normally distributed data with a linear time effect and testing the significance of treatment*time interaction in the modified intention-to-treat (mITT) cohort (ie, all randomly assigned participants who had a baseline and at least one subsequent echocardiogram measurement). Safety was assessed in the ITT population (ie, all randomly assigned participants). This trial was registered with ClinicalTrials.gov, NCT027175073, and enrolment and follow-up are complete. FINDINGS: Between July 3, 2012, and June 22, 2020, 196 participants were enrolled, of whom 182 (93%) were eligible and randomly assigned to either carvedilol (n=89) or placebo (n=93; ITT population). Median age was 24·7 years (IQR 19·6-36·6), 91 (50%) participants were female, 91 (50%) were male, and 119 (65%) were non-Hispanic White. As of data cutoff (June 10, 2022), median follow-up was 725 days (IQR 378-730). 151 (n=75 in the carvedilol group and n=76 in the placebo group) of 182 participants were included in the mITT population, among whom LVWT/Dz was similar between the two groups (-0·14 [95% CI -0·43 to 0·16] in the carvedilol group vs -0·45 [-0·77 to -0·13] in the placebo group; difference 0·31 [95% CI -0·10 to 0·73]; p=0·14). Two (2%) of 89 patients in the carvedilol group two adverse events of grade 2 or higher (n=1 shortness of breath and n=1 arthralgia) and none in the placebo group. There were no adverse events of grade 3 or higher and no deaths. INTERPRETATION: Low-dose carvedilol appears to be safe in long-term childhood cancer survivors at risk for heart failure, but did not result in significant improvement of LVWT/Dz compared with placebo. These results do not support the use of carvedilol for secondary heart failure prevention in anthracycline-exposed childhood cancer survivors. FUNDING: National Cancer Institute, Leukemia & Lymphoma Society, St Baldrick's Foundation, Altschul Foundation, Rally Foundation, American Lebanese Syrian Associated Charities.


Assuntos
Sobreviventes de Câncer , Insuficiência Cardíaca , Neoplasias , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem , Antraciclinas/efeitos adversos , Carvedilol/uso terapêutico , Método Duplo-Cego , Neoplasias/tratamento farmacológico , Resultado do Tratamento
13.
BMC Bioinformatics ; 25(1): 182, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724920

RESUMO

BACKGROUND: The prediction of drug sensitivity plays a crucial role in improving the therapeutic effect of drugs. However, testing the effectiveness of drugs is challenging due to the complex mechanism of drug reactions and the lack of interpretability in most machine learning and deep learning methods. Therefore, it is imperative to establish an interpretable model that receives various cell line and drug feature data to learn drug response mechanisms and achieve stable predictions between available datasets. RESULTS: This study proposes a new and interpretable deep learning model, DrugGene, which integrates gene expression, gene mutation, gene copy number variation of cancer cells, and chemical characteristics of anticancer drugs to predict their sensitivity. This model comprises two different branches of neural networks, where the first involves a hierarchical structure of biological subsystems that uses the biological processes of human cells to form a visual neural network (VNN) and an interpretable deep neural network for human cancer cells. DrugGene receives genotype input from the cell line and detects changes in the subsystem states. We also employ a traditional artificial neural network (ANN) to capture the chemical structural features of drugs. DrugGene generates final drug response predictions by combining VNN and ANN and integrating their outputs into a fully connected layer. The experimental results using drug sensitivity data extracted from the Cancer Drug Sensitivity Genome Database and the Cancer Treatment Response Portal v2 reveal that the proposed model is better than existing prediction methods. Therefore, our model achieves higher accuracy, learns the reaction mechanisms between anticancer drugs and cell lines from various features, and interprets the model's predicted results. CONCLUSIONS: Our method utilizes biological pathways to construct neural networks, which can use genotypes to monitor changes in the state of network subsystems, thereby interpreting the prediction results in the model and achieving satisfactory prediction accuracy. This will help explore new directions in cancer treatment. More available code resources can be downloaded for free from GitHub ( https://github.com/pangweixiong/DrugGene ).


Assuntos
Antineoplásicos , Aprendizado Profundo , Redes Neurais de Computação , Humanos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Biologia Computacional/métodos
14.
J Cell Mol Med ; 28(6): e18135, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429900

RESUMO

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulação para Cima/genética
15.
J Am Chem Soc ; 146(26): 17817-17826, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780163

RESUMO

This study describes the synthesis, structural characterization, and catalytic application of a bis(germylene)-stabilized stannylone (2). The reduction of digermylated stannylene (1) with 2.2 equiv of potassium graphite (KC8) leads to the formation of stannylone 2 as a green solid in 78% yield. Computational studies showed that stannylone 2 possesses a formal Sn(0) center and a delocalized 3-c-2-e π-bond in the Ge2Sn core, which arises from back-donation of the p-type lone pair electrons on the Sn atom to the vacant orbitals of the Ge atoms. Stannylone 2 can serve as an efficient precatalyst for the selective reduction of nitrous oxide (N2O) and nitroarenes (ArNO2) with the formation of dinitrogen (N2) and hydrazines (ArNH-NHAr), respectively. Exposure of 2 with N2O (1 atm) resulted in the insertion of two oxygen atoms into the Ge-Ge and Ge-Sn bonds, yielding the germyl(oxyl)stannylene (3). Moreover, the stoichiometric reaction of 2 with 1-chloro-4-nitrobenzene afforded an amido(oxyl)stannylene (4) through the complete scission of the N-O bonds of the nitroarene. Stannylenes 3 and 4 serve as catalytically active species for the catalytic reduction of nitrous oxide and nitroarenes, respectively. Mechanistic studies reveal that the cooperation of the low-valent Ge and Sn centers allows for multiple electron transfers to cleave the N-O bonds of N2O and ArNO2. This approach presents a new strategy for catalyzing the deoxygenation of N2O and ArNO2 using a zerovalent tin compound.

16.
J Am Chem Soc ; 146(25): 17103-17113, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869216

RESUMO

Understanding the interfacial hydrogen evolution reaction (HER) is crucial to regulate the electrochemical behavior in aqueous zinc batteries. However, the mechanism of HER related to solvation chemistry remains elusive, especially the time-dependent dynamic evolution of the hydrogen bond (H-bond) under an electric field. Herein, we combine in situ spectroscopy with molecular dynamics simulation to unravel the dynamic evolution of the interfacial solvation structure. We find two critical change processes involving Zn-electroplating/stripping, including the initial electric double layer establishment to form an H2O-rich interface (abrupt change) and the subsequent dynamic evolution of an H-bond (gradual change). Moreover, the number of H-bonds increases, and their strength weakens in comparison with the bulk electrolyte under bias potential during Zn2+ desolvation, forming a diluted interface, resulting in massive hydrogen production. On the contrary, a concentrated interface (H-bond number decreases and strength enhances) is formed and produces a small amount of hydrogen during Zn2+ solvation. The insights on the above results contribute to deciphering the H-bond evolution with competition/corrosion HER during Zn-electroplating/stripping and clarifying the essence of electrochemical window widened and HER suppression by high concentration. This work presents a new strategy for aqueous electrolyte regulation by benchmarking the abrupt change of the interfacial state under an electric field as a zinc performance-enhancement criterion.

17.
Cancer ; 130(13): 2287-2293, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427287

RESUMO

BACKGROUND: This study sought to evaluate the late toxicity associated with neoadjuvant and concurrent docetaxel and radiation therapy in patients with prostate cancer. METHODS: A secondary analysis was performed of the phase 3 multicenter randomized trial (Dana-Farber Cancer Institute 05-043) including 350 patients with nonmetastatic unfavorable-risk prostate cancer. Patients were randomized 1:1 to receive androgen deprivation therapy, radiation therapy, and docetaxel versus androgen deprivation therapy and radiation therapy. The study assessed the cumulative incidence rates of grade 2 and grade 3 or higher gastrointestinal, genitourinary, and sexual toxicity. A multivariable Fine and Gray's competing risks regression model adjusted for age at randomization and pelvic lymph node radiation therapy was used to evaluate the treatment effect of docetaxel on time to late genitourinary and gastrointestinal toxicities. RESULTS: The study included 338 patients who primarily had minimal or no comorbidity (74.9%) and median age 66 years (interquartile range: 61,71). At a median follow-up of 10.2 years, docetaxel was not associated with increased risk of any grade 3 or higher (adjusted hazard ratio [AHR], 0.98; 95% confidence interval [CI], 0.36-2.67; p = .96) or grade 2 gastrointestinal (p = .75), genitourinary (p = .44), and sexual (p = .29) toxicity. Age was associated with increased grade 3 or higher (AHR, 1.08; 95% CI, 1.01-1.16; p = .03) and grade 2 gastrointestinal toxicity (AHR, 1.11; 95% CI, 1.03-1.20; p = .005). A nonsignificant trend (p = .09) toward increased late grade 3 or higher toxicity was observed for pelvic radiation therapy use. CONCLUSIONS: Docetaxel combined with radiotherapy has an acceptable long-term toxicity profile.


Assuntos
Docetaxel , Neoplasias da Próstata , Humanos , Masculino , Docetaxel/efeitos adversos , Docetaxel/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Idoso , Pessoa de Meia-Idade , Taxoides/efeitos adversos , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/epidemiologia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antagonistas de Androgênios/efeitos adversos , Trato Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Terapia Neoadjuvante/efeitos adversos
18.
Dev Neurosci ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286121

RESUMO

Introduction Preterm infants experience tremendous early life pain/stress during their neonatal intensive care unit (NICU) hospitalization, which impacts their neurodevelopmental outcomes. Mitochondrial function/dysfunction may interface between perinatal stress events and neurodevelopment. Nevertheless, the specific proteins or pathways linking mitochondrial functions to pain-induced neurodevelopmental outcomes in infants are remain unidentified. Our study aims to investigate the associations among pain/stress, proteins associated with mitochondrial function/dysfunction, and neurobehavioral responses in preterm infants. Methods We conducted a prospective cohort study, enrolling 33 preterm infants between September 2017 and July 2022 at two affiliated NICUs located in Hartford and Farmington, CT. NICU Network Neurobehavioral Scale (NNNS) datasets were evaluated to explore potential association with neurobehavioral outcomes. The daily pain/stress experienced by infant's during their NICU stay was documented. At 36-38 weeks post-menstrual age (PMA), neurobehavioral outcomes were evaluated using the NNNS and buccal swabs were collected for further analysis. Mass spectrometry-based proteomics was conducted on epithelial cells obtained from buccal swabs to evaluate protein expression level. Lasso statistical methods were conducted to study the association between protein abundance and infants' NNNS summary scores. Multiple linear regression and Gene Ontology (GO) enrichment analyses were performed to examine how clinical characteristics and neurodevelopmental outcomes may be associated with protein levels and underlying molecular pathways. Results During NICU hospitalization, preterm premature rupture of membrane (PPROM) were negatively associated with neurobehavioral outcomes. The protein functions including leptin receptor binding activity, glutathione disulfide oxidoreductase activity and response to oxidative stress, lipid metabolism, phosphate and proton transmembrane transporter activity were negatively associated with neurobehavioral outcomes, in the contrast, cytoskeletal regulation, epithelial barrier and protection function were found to be associated with the optimal neurodevelopmental outcomes. In addition, mitochondrial function associated proteins including SPRR2A, PAIP1, S100A3, MT-CO2, PiC, GLRX, PHB2, and BNIPL-2 demonstrated positive association with favorable neurodevelopmental outcomes, while proteins of ABLIM1, UNC45A, Keratins, MUC1, and CYB5B showed positive association with adverse neurodevelopmental outcomes. Conclusion Mitochondrial function-related proteins were observed to be associated with early life pain/stress and neurodevelopmental outcomes in infants. Large-scale studies with longitudinal datasets are warranted. Buccal proteins could be used to predict potential neurobehavioral outcomes.

19.
Radiology ; 310(2): e231710, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319165

RESUMO

Background Preoperative recognition of irreversible bowel necrosis is important, as it provides valuable guidance for surgical strategy selection but also may inform perioperative risk assessment and communication. Few studies have focused on the association between CT signs and bowel necrosis. Purpose To assess the diagnostic accuracy of CT signs to predict bowel necrosis in patients with closed-loop small bowel obstruction (CL-SBO). Materials and Methods This retrospective single-center study included patients who were surgically confirmed to have CL-SBO caused by adhesion or internal hernia between January 2016 and May 2022. Necrosis was determined based on surgical exploration and postoperative pathologic examination. Two radiologists independently reviewed CT signs by both subjective visual assessment and objective measurement. Disagreements were resolved in consensus with a third gastrointestinal radiologist. Univariable and multivariable analyses were used to assess the association between CT signs and bowel necrosis, and Cohen κ was used to assess interobserver agreement. Sensitivity and specificity were calculated for each CT sign. Results This study included 145 patients: 61 (42.1%) in the necrotic group (median age, 62 years [IQR, 51-71.5 years]; 37 [60.7%] women) and 84 (57.9%) in the nonnecrotic group (median age, 61.5 years [IQR, 51-68.8 years]; 51 [60.7%] women). Univariable analysis and multivariable analysis showed that increased attenuation of intestinal contents and increased attenuation of intestinal wall were independent predictors for bowel necrosis (odds ratio = 45.3 and 15.1; P = .001 and P < .001, respectively). Increased attenuation of intestinal contents and increased attenuation of intestinal wall had similar sensitivity (64% and 67%, respectively) and specificity (99% and 92%, respectively) for predicting bowel necrosis. However, interobserver agreement was better for assessing the contents than the wall (κ = 0.84 and 0.59, respectively). Conclusion Increased attenuation of intestinal contents was a highly specific CT sign with good reproducibility to predict bowel necrosis in CL-SBO. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Taourel and Zins in this issue.


Assuntos
Conteúdo Gastrointestinal , Obstrução Intestinal , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Obstrução Intestinal/diagnóstico por imagem , Obstrução Intestinal/cirurgia , Necrose/diagnóstico por imagem , Tomografia Computadorizada por Raios X
20.
Small ; : e2402174, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693070

RESUMO

Freeze-cast Fe-25 W (at%) lamellar foams show excellent resistance to degradation at 800 °C during steam-hydrogen redox cycling between the metallic and oxide states, with fast reaction kinetics maintained up to at least 100 redox cycles with full Fe utilization. This very high stability stems from the sintering inhibition of W combined with the freeze-cast architecture and the chemical vapor transport (CVT) mechanism of reduction. These three factors create a hierarchical porosity in the foam, consisting of i) macroscopic elongated channels, ii) micro-scale sintering inhibition pores, and iii) submicron CVT pores. Microstructural characterization via SEM and EDS is combined with in situ XRD to fully explore the phase evolution and microstructural impact of W on Fe during redox cycling. Comparison with tapped Fe-25 W (at%) powder beds reveals that the freeze-cast channels and lamellae are not critical to the performance of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA