RESUMO
Cholesterol metabolism is tightly associated with colorectal cancer (CRC). Nevertheless, the clinical benefit of statins, the inhibitor of cholesterol biogenesis mevalonate (MVA) pathway, is inconclusive, possibly because of a lack of patient stratification criteria. Here, we describe that YAP-mediated zinc finger MYND-type containing 8 (ZMYND8) expression sensitizes intestinal tumors to the inhibition of the MVA pathway. We show that the oncogenic activity of YAP relies largely on ZMYND8 to enhance intracellular de novo cholesterol biogenesis. Disruption of the ZMYND8-dependent MVA pathway greatly restricts the self-renewal capacity of Lgr5+ intestinal stem cells (ISCs) and intestinal tumorigenesis. Mechanistically, ZMYND8 and SREBP2 drive the enhancer-promoter interaction to facilitate the recruitment of Mediator complex, thus upregulating MVA pathway genes. Together, our results establish that the epigenetic reader ZMYND8 endows YAP-high intestinal cancer with metabolic vulnerability.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAPRESUMO
Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.
Assuntos
Proteína C-Reativa , Nanopartículas , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Imunoensaio/métodos , Limite de Detecção , CorantesRESUMO
A dielectric liquid microlens array (LMA) with a tunable focal length was fabricated by using a microdroplet array generated through the dip-coating method. The process began with treating the octadecyltrichlorosilane (OTS) layer with selective UV/O3 irradiation for 20 min to establish a hydrophilic-hydrophobic patterning surface. The substrate was subsequently immersed in glycerol and then withdrawn at a constant rate to create a microdroplet array. Upon filling the cell with matching oil (SL5267) and placing it within a square array of a 200 µm diameter glycerol microdroplet array, the LMA was produced. The focal length ranged from approximately -0.96 to -0.3 mm within a voltage range of 0 to 60 Vrms. The glycerol microdroplets, characterized by their shapes, sizes, curvatures, and filling factors, can be precisely controlled by designing an OTS patterning or adjusting the dip-coating speed. This approach offers a rapid and high-throughput method for preparation. Our approach to fabricating tunable LMA offers several advantages, including simplicity of fabrication, uniform structural properties, cost-effectiveness, polarization independence, and excellent optical performance. These focus-tunable LMAs hold significant potential for applications in image processing, 3D displays, medical endoscopy, and military technologies.
RESUMO
In this paper, we demonstrate a facile way to prepare polymeric microlens arrays (MLAs) based on a discontinuous wetting surface using a self-assembly technique. A patterned hydrophobic-octadecyltrichlorosilane (OTS) surface was prepared by U V/O 3 irradiation through a shadow mask. The area exposed to U V/O 3 irradiation turned highly hydrophilic, whereas the area protected by the mask remained highly hydrophobic, generating the patterned OTS surface. The surface energy of the OTS/glass surface changed from 23 to 72.8 mN/m after 17 min of U V/O 3 treatment. The scribing of the optical glue-NOA 81 onto the microhole array enabled one to obtain the MLAs due to the generation of the NOA 81 droplet array via the surface tension. After UV light curing, the cured NOA 81 droplet array with uniform dimensions within a large area exhibited excellent MLA characteristics. Moreover, the method developed in this study is simple in operation, low-cost, and requires neither a clean room nor expensive equipment.
RESUMO
BACKGROUND: Filaggrin (FLG) is an essential protein that plays a vital role in maintaining skin barrier function and moisture levels, allowing the skin to adapt to dry environments. However, the precise temporal dynamics of FLG metabolism in the human epidermis remain poorly understood, and suitable tools to study these time-dependent effects are currently lacking. OBJECTIVE: To investigate the molecular mechanisms and time course of FLG metabolism and skin barrier function under high- and low-humidity conditions, utilizing a reconstructed epidermis model. METHODS: EpiSkin specimens cultured under humid or dry conditions for varying durations (2-48 h) were compared by assessing FLG degradation and skin barrier formation using immunofluorescence staining and western blotting. RESULTS: Under conditions of low humidity, the proteolysis of FLG in EpiSkin increased between 4 and 12 h and was accompanied by elevated levels of cysteine-aspartic protease (caspase)-14. The expression of peptidyl arginine deiminase 1 and calpain 1 also increased at 4 h. However, after 24 h, the expression of these three FLG-degrading proteins significantly decreased. Conversely, the levels of pyrrolidone-5-carboxylic acid and urocanic acid initially decreased at 2 h and then increased between 12 and 24 h. Additionally, the expression of skin barrier proteins, such as FLG, transglutaminase 5, loricrin and zonula occludens-1, decreased starting from 12 h. Notably, epidermal cell viability and activity were also inhibited. CONCLUSION: We propose a reliable and ethical model to study the temporal dynamics of FLG metabolism and its role in skin barrier function. Using a commercially reconstructed epidermis to mimic dry skin formation obviates the need for animal and human testing.
CONTEXTE: la filaggrine (FLG) est une protéine essentielle qui joue un rôle vital dans le maintien de la fonction de barrière cutanée et des taux d'humidité, permettant à la peau de s'adapter aux environnements secs. Cependant, la dynamique temporelle précise du métabolisme de la FLG dans l'épiderme humain reste mal comprise, et des outils appropriés pour étudier ces effets dépendant du temps font actuellement défaut. OBJECTIF: étudier les mécanismes moléculaires et l'évolution dans le temps du métabolisme de la FLG et de la fonction de barrière cutanée en milieux à humidité élevée et faible, en utilisant un modèle d'épiderme reconstruit. MÉTHODES: les échantillons EpiSkin cultivés en milieux humides ou secs pendant des durées variables (2 à 48 h) ont été comparés en évaluant la dégradation de la FLG et la formation d'une barrière cutanée à l'aide d'une coloration par immunofluorescence et d'un Western blot. RÉSULTATS: en milieux à faible humidité, la protéolyse de la FLG dans EpiSkin a augmenté entre 4 et 12 h et s'est accompagnée de taux élevés de cystéineprotéase aspartique (caspase)14. L'expression du peptidyl arginine déiminase 1 et de la calpaïne 1 a également augmenté à 4 h. Cependant, après 24 h, l'expression de ces trois protéines de dégradation de la FLG a significativement diminué. Inversément, les taux d'acide pyrrolidone5carboxylique et d'acide urocanique ont initialement diminué au bout de 2 h, puis ont augmenté entre 12 et 24 h. En outre, l'expression des protéines de la barrière cutanée, telles que la FLG, la transglutaminase 5, la loricrine et le zonula occludens1, a diminué à partir de 12 h. Notamment, la viabilité et l'activité des cellules épidermiques ont également été inhibées. CONCLUSION: nous proposons un modèle fiable et éthique pour étudier la dynamique temporelle du métabolisme de la FLG et son rôle dans la fonction de barrière cutanée. L'utilisation d'un épiderme reconstitué commercialement pour imiter la formation d'une peau sèche élimine la nécessité de réaliser des examens sur des animaux et des humains.
Assuntos
Epiderme , Proteínas Filagrinas , Umidade , Proteínas de Filamentos Intermediários , Proteínas Filagrinas/metabolismo , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Epiderme/metabolismo , Modelos Biológicos , Proteólise , Caspase 14/metabolismo , Ácido Urocânico/metabolismoRESUMO
Pancreatic adenocarcinoma (PAAD) has been a huge challenge to public health due to its increasing incidence, frequent early metastasis, and poor outcome. The molecular basis of tumorigenesis and metastasis in PAAD is largely unclear. Here, we identified a novel tumor-suppressor long noncoding RNA (lncRNA) MBNL1-AS1, in PAAD and revealed its downstream mechanism. Quantitative real-time PCR (qRT-PCR) data showed that MBNL1-AS1 expression was significantly downregulated in PAAD tissues and cells, which was closely associated with metastasis and poor prognosis. Cell counting kit-8 (CCK-8) assay, transwell assay, and western blot verified that overexpression of MBNL1-AS1 suppressed cell proliferation, migration, and epithelial mesenchymal transformation (EMT) behavior in PAAD cells. By using a dual luciferase reporter gene system, we confirmed that miR-301b-3p was a direct target of MBNL1-AS1. Further mechanismic study revealed that upregulation of miR-301b-3p abolished the inhibitory effect of MBNL1-AS1 overexpression on cell proliferation, tumorigenesis, migration and EMT. Our results demonstrate that MBNL1-AS1 plays a tumor-suppressive role in PAAD mainly by downregulating miR-301b-3p, providing a novel therapeutic target for PAAD.
Assuntos
Adenocarcinoma , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Adenocarcinoma/genética , Carcinógenos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias PancreáticasRESUMO
AIM: The present study aimed to identify risk factors for venous thromboembolism (VTE) after pancreaticoduodenectomy (PD) and to develop and internally validate a predictive model for the risk of venous thrombosis. METHODS: We retrospectively collected data from 352 patients who visited our hospital to undergo PD from January 2018 to March 2022. The number of patients recruited was divided in an 8:2 ratio by using the random split method, with 80% of the patients serving as the training set and 20% as the validation set. The least absolute shrinkage and selection operator (Lasso) regression model was used to optimize feature selection for the VTE risk model. Multivariate logistic regression analysis was used to construct a prediction model by incorporating the features selected in the Lasso model. C-index, receiver operating characteristic curve, calibration plot, and decision curve were used to assess the accuracy of the model, to calibrate the model, and to determine the clinical usefulness of the model. Finally, we evaluated the prediction model for internal validation. RESULTS: The predictors included in the prediction nomogram were sex, age, gastrointestinal symptoms, hypertension, diabetes, operative method, intraoperative bleeding, blood transfusion, neutrophil count, prothrombin time (PT), activated partial thromboplastin time (APTT), aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (AST/ALT), and total bilirubin (TBIL). The model showed good discrimination with a C-index of 0.827, had good consistency based on the calibration curve, and had an area under the ROC curve value of 0.822 (P < 0.001, 95%confidence interval:0.761-0.882). A high C-index value of 0.894 was reached in internal validation. Decision curve analysis showed that the VTE nomogram was clinically useful when intervention was decided at the VTE possibility threshold of 10%. CONCLUSION: The novel model developed in this study is highly targeted and enables personalized assessment of VTE occurrence in patients who undergo PD. The predictors are easily accessible and facilitate the assessment of patients by clinical practitioners.
Assuntos
Pancreaticoduodenectomia , Tromboembolia Venosa , Humanos , Pancreaticoduodenectomia/efeitos adversos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Estudos Retrospectivos , Fatores de Risco , Análise Fatorial , NomogramasRESUMO
Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.
Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Antivirais/farmacologia , Inibidores do Citocromo P-450 CYP3A , Interações Ervas-Drogas , Humanos , Microssomos Hepáticos , RatosRESUMO
A facile benzylic alkylation of indenes and other arenes was developed from readily available primary and secondary alcohols using our newly investigated CCC pincer IrIII catalyst (SNIr-H). Excellent regioselectivity and yield (89 %) of the C3-alkylated indenes were obtained. Additionally, the challenging sp2 C-alkylation was readily accomplished. This method could be utilized for the synthesis of the analogs of a histamine H1 receptor antagonist and the functional material template molecule, indeno[2,1-a]indene. A hemilabile IrIII -dihydride intermediate was proposed based on control experiments and previous density functional theory (DFT) calculations for the borrowing hydrogen mechanism and is key to the success of this IrIII catalyst in the reduction of unactivated multi-substituted olefin intermediates.
RESUMO
BACKGROUND: Discovering potential predictive risks in the super precarcinomatous phase of hepatocellular carcinoma (HCC) without any clinical manifestations is impossible under normal paradigm but critical to control this complex disease. METHODS: In this study, we utilized a proposed sequential allosteric modules (AMs)-based approach and quantitatively calculated the topological structural variations of these AMs. RESULTS: We found the total of 13 oncogenic allosteric modules (OAMs) among chronic hepatitis B (CHB), cirrhosis and HCC network used SimiNEF. We obtained the 11 highly correlated gene pairs involving 15 genes (r > 0.8, P < 0.001) from the 12 OAMs (the out-of-bag (OOB) classification error rate < 0.5) partial consistent with those in independent clinical microarray data, then a three-gene set (cyp1a2-cyp2c19-il6) was optimized to distinguish HCC from non-tumor liver tissues using random forests with an average area under the curve (AUC) of 0.973. Furthermore, we found significant inhibitory effect on the tumor growth of Bel-7402, Hep 3B and Huh7 cell lines in zebrafish treated with the compounds affected those three genes. CONCLUSIONS: These findings indicated that the sequential AMs-based approach could detect HCC risk in the patients with chronic liver disease and might be applied to any time-dependent risk of cancer.
Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Vírus da Hepatite B , Humanos , Cirrose Hepática , Neoplasias Hepáticas/genética , Peixe-ZebraRESUMO
Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein-protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.
Assuntos
Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Lipopolissacarídeos/toxicidade , Farmacologia em Rede/métodos , Análise de Sequência de RNA/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Ratos WistarRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a leading causes of cancer mortality worldwide. Currently, laparoscopic pancreatic resection (LPR) is extensively applied to treat benign and low-grade diseases related to the pancreas. The viability and safety of LPR for PDAC needs to be understood better. Laparoscopic distal pancreatectomy (LDP) and pancreaticoduodenectomy (LPD) are the two main surgical approaches for PDAC. We performed separate propensity score matching (PSM) analyses to assess the surgical and oncological outcomes of LPR for PDAC by comparing LDP with open distal pancreatectomy (ODP) as well as LPD with open pancreaticoduodenectomy (OPD). METHODS: We assessed the data of patients who underwent distal pancreatectomy (DP) and pancreaticoduodenectomy (PD) for PDAC between January 2004 and February 2020 at our hospital. A one-to-one PSM was applied to prevent selection bias by accounting for factors such as age, sex, body mass index, and tumour size. The DP group included 86 LDP patients and 86 ODP patients, whereas the PD group included 101 LPD patients and 101 OPD patients. Baseline characteristics, intraoperative effects, postoperative recovery, and survival outcomes were compared. RESULTS: Compared to ODP, LDP was associated with shorter operative time, lesser blood loss, and similar overall morbidity. Of the 101 patients who underwent LPD, 10 patients (9.9%) required conversion to laparotomy. The short-term surgical advantage of LPD is not as apparent as that of LDP due to conversions. Compared with OPD, LPD was associated with longer operative time, lesser blood loss, and similar overall morbidity. For oncological and survival outcomes, there were no significant differences in tumour size, R0 resection rate, and tumour stage in both the DP and PD subgroups. However, laparoscopic procedures appear to have an advantage over open surgery in terms of retrieved lymph nodes (DP subgroup: 14.4 ± 5.2 vs. 11.7 ± 5.1, p = 0.03; PD subgroup 21.9 ± 6.6 vs. 18.9 ± 5.4, p = 0.07). These two groups did not show a significant difference in the pattern of recurrence and overall survival rate. CONCLUSIONS: Laparoscopic DP and PD are feasible and oncologically safe procedures for PDAC, with similar postoperative outcomes and long-term survival among patients who underwent open surgery.
Assuntos
Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/cirurgia , Laparoscopia , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Idoso , Carcinoma Ductal Pancreático/diagnóstico , Comorbidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Neoplasias Pancreáticas/diagnóstico , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/métodos , Complicações Pós-Operatórias/etiologia , Pontuação de Propensão , Resultado do Tratamento , Neoplasias PancreáticasRESUMO
CONTEXT: Xiaoyaosan decoction (XYS), a classical Traditional Chinese Medicine (TCM) formula is used to treat liver fibrosis in clinics. OBJECTIVE: This study explores defined compound combinations from XYS decoction to treat liver fibrosis. MATERIALS AND METHODS: Network pharmacology combined with transcriptomics analysis was used to analyze the XYS decoction and liver depression and spleen deficiency syndrome liver fibrosis. From the constructed XYS-Syndrome-liver fibrosis network, the top 10 active formulas were developed by topological analysis according to network stability. The most active formula was determined by in vitro study. The anti-fibrosis effect was evaluated by in vitro and in vivo studies. RESULTS: According to the network XYS-Syndrome-liver fibrosis network, 8 key compounds and 255 combinations were predicted from in XYS. Luteolin, licochalcone A, aloe-emodin and acacetin formula (LLAAF) had a synergistic effect on the proliferation inhibition of hepatic stellate cells compared to individual compounds alone. The treatment of XYS and LLAAF showed a similar anti-liver fibrotic effect that reduced histopathological changes of liver fibrosis, Hyp content and levels of α-SMA and collagen I in CCl4-induced liver fibrosis in rats. Transcriptomics analysis revealed LLAAF regulated PI3K-Akt, AMPK, FoxO, Jak-STAT3, P53, cell cycle, focal adhesion, and PPAR signalling. Furthermore, LLAAF was confirmed to regulate Jak-STAT and PI3K-Akt-FoxO signalling in vitro and in vivo. CONCLUSIONS: This study developed a novel anti-liver formula LLAAF from XYS, and demonstrated its anti-liver fibrotic activity which may be involved in the regulation of Jak-STAT and PI3K-Akt-FoxO signalling.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Antraquinonas/administração & dosagem , Antraquinonas/farmacologia , Linhagem Celular , Chalconas/administração & dosagem , Chalconas/farmacologia , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Flavonas/administração & dosagem , Flavonas/farmacologia , Células Estreladas do Fígado/patologia , Humanos , Luteolina/administração & dosagem , Luteolina/farmacologia , Masculino , Farmacologia em Rede , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , TranscriptomaRESUMO
Angiogenesis is the central pathological process in hepatocellular carcinoma (HCC), and its progression is affected by tumor cells and the microenvironment. Activated hepatic stellate cells (aHSCs) are the most significant stromal cells involved in HCC. This study was aimed to explore the effects and mechanisms of aHSCs on angiogenesis in HCC. We isolated primary hepatoma cells, aHSCs, and hepatic vascular endothelial cells from human HCC samples. Then, we performed a novel in vitro assay and in vivo experiment in a nude mouse HCC model to investigate the functions of aHSCs on angiogenesis in HCC. Our results demonstrated that aHSCs are the primary sources of angiopoietin-1 (Ang-1) in human HCC in vitro, and aHSCs could promote hepatic vascular endothelial cell (HVEC) growth by secreting Ang-1. Furthermore, aHSCs could induce HVEC microtubule formation, and this ability was reduced when Ang-1 expression was silenced in aHSCs. In addition, CD34 expression in a nude mouse HCC model was downregulated when Ang-1 messenger RNA was silenced in aHSCs. Our data also indicated that HSC Ang-1 expression could be inhibited by overexpressing Raf kinase inhibitor protein. Therefore, we suggest that aHSCs promote angiogenesis through secreting Ang-1, potentially providing an interesting target for antiangiogenic therapies for HCC.
Assuntos
Angiopoietina-1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/patologia , Neovascularização Patológica/patologia , Animais , Apoptose , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The methylcytosine oxidase TET proteins play important roles in DNA demethylation and development. In developing embryos, TET2 are upregulated during pre-implantation development, and significantly expressed in the trophectoderm and inner cell mass. In this study, we identified Barx2 as a new target of Tet2. Tet2 bound and demethylated the promoter of Barx2 in mouse embryonic stem cells (mESCs) to maintain the expression of Barx2. During mESC differentiation, Tet2 bound the promoter of Barx2 in day 4 embryonic bodies but not in day 8 EBs. However, Barx2 expression remained unchanged. Thus, Tet2 functioned as a demethylase and maintained the expression of Barx2 in undifferentiated and early differentiated mESCs.
Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/metabolismo , Camundongos , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/genéticaRESUMO
BACKGROUND: Although recent reports have suggested the advantages of laparoscopic distal pancreatectomy (LDP), the potential benefits of this approach in elderly patients remain unclear. The aim of this study was to clarify the value of LDP in the elderly, in whom co-morbid diseases were generally more common. METHODS: Seventy elderly patients (≥ 70 years) and 264 non-elderly patients (40-69 years) who underwent LDP, and 48 elderly patients (≥ 70 years) who underwent open distal pancreatectomy (ODP) between May 2005 and May 2018 were studied. Demographics, intraoperative, and postoperative outcomes were compared. RESULTS: Comorbidity was more common in elderly patients than in non-elderly patients who underwent LDP (57.1 vs. 38.3%, p < 0.01). The intraoperative factors, postoperative complication rate, and length of hospital stay were comparable in these two groups. Elderly patients who underwent LDP had a significantly shorter operative time (185.5 vs. 208.0 min, p = 0.02), less blood loss (191.0 vs. 291.8 mL, p < 0.01), and reduced length of postoperative hospital stay (11.4 vs. 15.1 days, p < 0.01) than elderly patients who had ODP. The overall complication rate tended to be lower in LDP group than that in ODP group (20.0 vs. 33.3%, p = 0.07). CONCLUSION: LDP performed on the elderly is safe and feasible, leading to short-term outcomes similar to those of non-elderly patients. LDP could be an alternative to ODP in elderly patients, providing a lower rate of morbidity and favorable postoperative recovery and outcomes.
Assuntos
Laparoscopia , Pancreatectomia , Neoplasias Pancreáticas , Complicações Pós-Operatórias , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Comorbidade , Feminino , Humanos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Masculino , Pessoa de Meia-Idade , Avaliação de Processos e Resultados em Cuidados de Saúde/estatística & dados numéricos , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/cirurgia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Estudos RetrospectivosRESUMO
Metastasis is a major cause of death in patients with breast cancer. In the process of cancer development, epithelial-mesenchymal transition (EMT) is crucial to promoting the invasion and migration of tumor cells. In a previous study, the role of resveratrol in migration and metastasis was investigated in MDA-MB-231 (MDA231) human breast cancer cells and a xenograft-bearing mouse model. Additionally, the related mechanism was explored. In the present study, in vitro Transwell assays showed that resveratrol can inhibit the migration of transforming growth factor (TGF)-ß1-induced MDA231 cells in a concentration-dependent manner. An enzyme-linked immunosorbent assay (ELISA) showed that resveratrol can reduce the secretion of matrix metalloproteinase (MMP)-2 and MMP-9. Immunofluorescence was performed to confirm the expression of EMT-related markers. Immunofluorescence assays confirmed that resveratrol changed the expression of the EMT-related markers E-cadherin and vimentin. Western blot analysis demonstrated that resveratrol decreased the expression levels of MMP-2, MMP-9, Fibronectin, α-SMA, P-PI3K, P-AKT, Smad2, Smad3, P-Smad2, P-Smad3, vimentin, Snail1, and Slug, as well as increased the expression levels of E-cadherin in MDA231 cells. In vivo, resveratrol inhibited lung metastasis in a mouse model bearing MDA231 human breast cancer xenografts without marked changes in body weight or liver and kidney function. These results indicate that resveratrol inhibits the migration of MDA231 cells by reversing TGF-ß1-induced EMT and inhibits the lung metastasis of MDA231 human breast cancer in a xenograft-bearing mouse model.
Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Resveratrol/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017.
Assuntos
Análise de Alimentos/métodos , Qualidade dos Alimentos , Espectrometria de Massas/métodos , Animais , Desenho de Equipamento , Análise de Alimentos/instrumentação , Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , Abastecimento de Alimentos , Humanos , Espectrometria de Massas/instrumentaçãoRESUMO
Fuzheng-Huayu formula (FZHY), a Chinese herbal mixture prescription, has been proven effective in treating liver fibrosis and cirrhosis in both clinical trials and animal experiments. In this study we assessed the metabolic mechanisms of traditional Chinese medicine (TCM) syndrome-based FZHY treatment in liver cirrhosis (LC). A total of 113 participants, including 50 healthy controls and 63 LC patients, were recruited. According to the diagnosis and differentiation of the TCM syndromes, the LC patients were classified into 5 TCM syndrome groups including the liver stagnation syndrome (LSS), spleen deficiency and damp overabundance syndrome (SDDOS), damp-heat accumulation syndrome (DHAS), liver-kidney Yin deficiency syndrome (LKYDS), and blood stagnation syndrome (BSS), and administered FZHY for 6 months. FZHY treatment significantly decreased serum levels of hyaluronic acid (HA), a biochemical marker for LC, as well as TCM syndrome scores (the TCM syndrome scores were decreased in all the groups with significant decreases in the LSS and LKYDS groups). Furthermore, FZHY treatment gradually shifted the metabolic profiles of LC patients from a pathologic state to a healthy state, especially in LC patients with LSS and LKYDS. Twenty-two differently altered metabolites (DAMs) were identified, including carbohydrates, amino acids, fatty acids, etc with 9 DAMs in LSS patients, 9 in LKYDS patients, and 4 in other patients. The metabolic pathways involved in the conversion of amino acids and the body's detoxification process were regulated first, followed by the pathways involved in the body's energy supply process. In conclusion, the evaluation of the effect of TCM syndrome-based FZHY treatment show that FZHY has a better effect on LKYDS and LSS than on the other TCM syndromes, and the metabolic mechanisms might be involved in the increased detoxification function in LKYDS and the improvement of energy supply in LSS, which provides important evidence for the clinical application of TCM syndrome-based treatment.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Metabolômica/métodos , Biomarcadores/sangue , Estudos de Casos e Controles , China , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Fatores de Tempo , Resultado do TratamentoRESUMO
Liver fibrosis is a consequence of chronic liver disease that can progress to liver cirrhosis or even hepatocarcinoma. Fuzheng Huayu (FZHY), a Chinese herbal formula, has been shown to exert anti-fibrotic effects. To better understand the molecular mechanisms underlying the anti-fibrotic effects of FZHY, we analyzed transcriptomic and proteomic combination profiles in CCl4-induced liver fibrosis in rats, which were treated with extracted FZHY powder (0.35 g·kg-1·d-1, ig) for 3 weeks. We showed that FZHY administration significantly improved liver function, alleviated hepatic inflammatory and fibrotic changes, and decreased the hydroxyproline content in the livers of CCl4-treated rats. When their liver tissues were examined using microarray and iTRAQ, we found 255 differentially expressed genes (fold change ≥1.5, P<0.05) and 499 differentially expressed proteins (fold change ≥1.2, P<0.05) in the FZHY and model groups. Functional annotation with DAVID (The Database for Annotation, Visualization and Integrated Discovery) showed that 15 enriched gene ontology terms, including drug metabolic process, response to extracellular stimulus, response to vitamins, arachidonic acid metabolic process, response to wounding, and oxidation reduction might be involved in the anti-fibrotic effects of FZHY; whereas KEGG pathway analysis revealed that eight enriched pathways, including arachidonic acid metabolism, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism might also be involved. Moreover, the protein-protein interaction network demonstrated that 10 core genes/proteins overlapped, with Ugt2a3, Cyp2b1 and Cyp3a18 in retinol metabolism pathway overlapped to a higher degree. Compared to the model rats, the livers of FZHY-treated rats had significantly higher mRNA and protein expression levels of Ugt2a3, Cyp2b1 and Cyp3a18. Furthermore, the concentration of retinoic acid was significantly higher in the FZHY-treated rats compared with the model rats. The results suggest that the anti-fibrotic effects of FZHY emerge through multiple targets, multiple functions, and multiple pathways, including FZHY-regulated retinol metabolism, xenobiotic metabolism by cytochrome P450, and drug metabolism through up-regulated Ugt2a3, Cyp2b1, and Cyp3a18. These genes may play important anti-fibrotic roles in FZHY-treated rats.