Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654456

RESUMO

Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl cis-trans isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton CYP gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 CYP gene sequences from G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively; 221 CYP genes were unequally located on chromosomes. Phylogenetic analysis showed that 231 CYP genes clustered into three major groups and eight subgroups. Collinearity analysis showed that segmental duplications played a significant role in the expansion of CYP members in cotton. There were light-responsiveness, abiotic-stress and hormone-response elements upstream of most of the CYPs. In addition, the motif composition analysis revealed that 49 cyclophilin proteins had extra domains, including TPR (tetratricopeptide repeat), coiled coil, U-box, RRM (RNA recognition motif), WD40 (RNA recognition motif) and zinc finger domains, along with the cyclophilin-like domain (CLD). The expression patterns based on qRT-PCR showed that six CYP expression levels showed greater differences between Xinhai21 (long fibres, G. barbadense) and Ashmon (short fibres, G. barbadense) at 10 and 20 days postanthesis (DPA). These results signified that CYP genes are involved in the elongation stage of cotton fibre development. This study provides a valuable resource for further investigations of CYP gene functions and molecular mechanisms in cotton.


Assuntos
Fibra de Algodão , Ciclofilinas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Genes de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
2.
Mol Ecol ; 23(3): 522-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24320717

RESUMO

The living hyena species (spotted, brown, striped and aardwolf) are remnants of a formerly diverse group of more than 80 fossil species, which peaked in diversity in the Late Miocene (about 7-8 Ma). The fossil history indicates an African origin, and morphological and ancient DNA data have confirmed that living spotted hyenas (Crocuta crocuta) of Africa were closely related to extinct Late Pleistocene cave hyenas from Europe and Asia. The current model used to explain the origins of Eurasian cave hyena populations invokes multiple migrations out of Africa between 3.5-0.35 Ma. We used mitochondrial DNA sequences from radiocarbon-dated Chinese Pleistocene hyena specimens to examine the origin of Asian populations, and temporally calibrate the evolutionary history of spotted hyenas. Our results support a far more recent evolutionary timescale (430-163 kya) and suggest that extinct and living spotted hyena populations originated from a widespread Eurasian population in the Late Pleistocene, which was only subsequently restricted to Africa. We developed statistical tests of the contrasting population models and their fit to the fossil record. Coalescent simulations and Bayes Factor analysis support the new radiocarbon-calibrated timescale and Eurasian origins model. The new Eurasian biogeographic scenario proposed for the hyena emphasizes the role of the vast steppe grasslands of Eurasia in contrast to models only involving Africa. The new methodology for combining genetic and geological data to test contrasting models of population history will be useful for a wide range of taxa where ancient and historic genetic data are available.


Assuntos
Evolução Biológica , Hyaenidae/genética , Filogenia , Animais , Ásia , Teorema de Bayes , Citocromos b/genética , DNA Mitocondrial/genética , Europa (Continente) , Fósseis , Genética Populacional , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
3.
Genes (Basel) ; 10(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817162

RESUMO

Chalcone isomerase (CHI) is a key component of phenylalanine metabolism that can produce a variety of flavonoids. However, little information and no systematic analysis of CHI genes is available for cotton. Here, we identified 33 CHI genes in the complete genome sequences of four cotton species (Gossypium arboretum L., Gossypium raimondii L., Gossypium hirsutum L., and Gossypium barbadense L.). Cotton CHI proteins were classified into two main groups, and whole-genome/segmental and dispersed duplication events were important in CHI gene family expansion. qRT-PCR and semiquantitative RT-PCR results suggest that CHI genes exhibit temporal and spatial variation and respond to infection with Fusarium wilt race 7. A preliminary model of CHI gene involvement in cotton evolution was established. Pairwise comparison revealed that seven CHI genes showed higher expression in cultivar 06-146 than in cultivar Xinhai 14. Overall, this whole-genome identification unlocks a new approach to the comprehensive functional analysis of the CHI gene family, which may be involved in adaptation to plant pathogen stress.


Assuntos
Fusarium/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium , Liases Intramoleculares , Família Multigênica , Doenças das Plantas , Biologia Computacional , Fusarium/genética , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Liases Intramoleculares/biossíntese , Liases Intramoleculares/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
J Genet ; 97(1): e1-e12, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29700269

RESUMO

Improving cotton fibre quality is a major breeding goal for Upland cotton in China.To investigate the genetic mechanisms of fibre quality, a diverse panel of 403 Upland cotton accessions was grown, and the fibre quality traits were measured in six different environments. Genotyping was performed with genomewide simple sequence repeats. A total of 201 markers were polymorphic and generated 394 allele loci, and 403 accessions were arranged into two subgroups using Structure software. Of the marker loci, 18.94% showed significant linkage disequilibrium (P < 0.05). A mixed linear model in association mapping showed that 51 associations were significant between 39 polymorphic loci and five fibre quality traits, according to best linear unbiased prediction, and in at least three of six environments. Of the 39 associated marker loci, 12 were coincident with previous studies. There were 41 typical accessions identified as containing favourable allele loci related to fibre quality traits. The identified favourable QTL alleles and typical accessions for fibre quality are excellent genetic resources for future cotton breeding in China.


Assuntos
Alelos , Mapeamento Cromossômico/métodos , Fibra de Algodão , Estudos de Associação Genética , Genoma de Planta/genética , Gossypium/genética , Característica Quantitativa Herdável , Cruzamento , China , Cromossomos de Plantas , DNA de Plantas , Ecótipo , Marcadores Genéticos , Variação Genética , Genótipo , Desequilíbrio de Ligação/genética , Repetições de Microssatélites , Fenótipo , Polimorfismo Genético , Locos de Características Quantitativas
5.
Yi Chuan Xue Bao ; 31(8): 850-7, 2004 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-15481542

RESUMO

The full-length cDNA,DNA and promoter of ADP-ribosylation-factor 1 (arf1) was isolated from Gossypium hirsutum Y18 by means of isocaudarner inverse PCR (II-PCR) and rapid isolating cDNA 5' unknown sequence and promoter (RICUP) established in our lab. Results indicated that the gene is 4 360 bp in size, including seven exons and six introns. Interestingly, alterative splicing occurs at intron I. Differential processing of intron 1 yields three different transcripts with 1 026 bp, 1103 bp and 1 544 bp in sizes, respectively. Arf1 encodes 181 amino acids. Sequence analysis indicated that sequence upstream transcription initiation site of arf1 includes typical initiator, TATA box, CCAAT box, GC box and several forward and reverse repeat sequences. And typical promoter structures, such as AT-rich sequence and palindrome structure have been detected in the sequence downstream transcription initiation site. Southern blot analysis indicated that the gene has two copies in the genome of cotton. Northern blot confirmed the predominate expression of arf1 in reproductive organs of cotton, including bud, flower, fiber and boll. Also, the feature and character of arf1 and its promoter have been studied. This study will lay foundation for the other research on function of arf1 in the development of reproductive organs in cotton.


Assuntos
Fator 1 de Ribosilação do ADP/genética , Processamento Alternativo , Gossypium/genética , Sequência de Bases , DNA Complementar/química , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA